Manganese and Iron PCP Pincer Complexes – The Influence of Sterics on Structure and Reactivity

Wolfgang Eder, a Daniel Himmelbauer, a Berthold Stöger, b Luis F. Veiros, d Marc Pignitter, e and Karl Kirchner*, a

a Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, A-1060 Vienna, AUSTRIA
b X-Ray Center, Vienna University of Technology, Getreidemarkt 9, A-1060 Vienna, AUSTRIA
c Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais No. 1, 1049-001 Lisboa, PORTUGAL
d Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Althanstrasse 14, 1090 Vienna, AUSTRIA

TABLE OF CONTENT

CRYSTALLOGRAPHIC DATA S2-S3
EPR DATA S3
NMR SPECTRA S4-12
Crystallographic Data

Table S1. Details for the crystal structure determination of 2a, 3, 4

<table>
<thead>
<tr>
<th></th>
<th>2a</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>formula</td>
<td>C_{23}H_{35}MnO_3P_2</td>
<td>C_{23}H_{36}BF$_4$MnO_3P_2</td>
<td>C_{23}H_{35}BrFeO_3P_2</td>
</tr>
<tr>
<td>Fw, g mol$^{-1}$</td>
<td>476.39</td>
<td>564.21</td>
<td>592.20</td>
</tr>
<tr>
<td>cryt.size, mm</td>
<td>0.25 x 0.25 x 0.2</td>
<td>0.15 x 0.15 x 0.04</td>
<td>0.52 x 0.24 x 0.10</td>
</tr>
<tr>
<td>color, shape</td>
<td>yellow, block</td>
<td>red, plate</td>
<td>yellow, block</td>
</tr>
<tr>
<td>crystal system</td>
<td>orthorhombic</td>
<td>monoclinic</td>
<td>orthorhombic</td>
</tr>
<tr>
<td>space group</td>
<td>Pbc_a (No. 61)</td>
<td>P2$_1$(No. 4)</td>
<td>Pbc_a (No. 61)</td>
</tr>
<tr>
<td>a, Å</td>
<td>10.6082(2)</td>
<td>9.8863(9)</td>
<td>16.2190(15)</td>
</tr>
<tr>
<td>b, Å</td>
<td>15.4709(3)</td>
<td>11.4370(10)</td>
<td>13.5863(12)</td>
</tr>
<tr>
<td>c, Å</td>
<td>28.6193(5)</td>
<td>11.5482(10)</td>
<td>21.3867(19)</td>
</tr>
<tr>
<td>α, °</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>β, °</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>γ, °</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>V, Å3</td>
<td>47696.95(15)</td>
<td>12999.9(2)</td>
<td>47127.7(7)</td>
</tr>
<tr>
<td>T, K</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>ρ, g cm$^{-3}$</td>
<td>1.347</td>
<td>1.442</td>
<td>1.492</td>
</tr>
<tr>
<td>μ, mm$^{-1}$ (MoKα)</td>
<td>0.719</td>
<td>0.683</td>
<td>2.487</td>
</tr>
<tr>
<td>F(000)</td>
<td>2016</td>
<td>588</td>
<td>2192</td>
</tr>
<tr>
<td>absorption corrections, T${min}$ - T${max}$</td>
<td>multi-scan, 0.62 - 0.74</td>
<td>multi-scan, 0.68 - 0.75</td>
<td>multi-scan, 0.18 - 0.27</td>
</tr>
<tr>
<td>θ range, deg</td>
<td>34.92 - 2.39</td>
<td>33.16 - 2.51</td>
<td>32.602 - 2.175</td>
</tr>
<tr>
<td>no. of rflns measd</td>
<td>37035</td>
<td>34239</td>
<td>58434</td>
</tr>
<tr>
<td>R$_{int}$</td>
<td>0.00382</td>
<td>0.0636</td>
<td>0.0700</td>
</tr>
<tr>
<td>no. of rflns unique</td>
<td>10249</td>
<td>9908</td>
<td>8605</td>
</tr>
<tr>
<td>no. of rflns I > 2σ(I)</td>
<td>8469</td>
<td>7963</td>
<td>6117</td>
</tr>
<tr>
<td>no of params/restraints</td>
<td>270 / 0</td>
<td>329 / 1</td>
<td>261 / 0</td>
</tr>
<tr>
<td>R (I > 2σ(I))a</td>
<td>0.0696</td>
<td>0.0411</td>
<td>0.0318</td>
</tr>
<tr>
<td>R (all data)</td>
<td>0.0414</td>
<td>0.0611</td>
<td>0.0638</td>
</tr>
<tr>
<td>wR (I > 2σ(I))</td>
<td>0.0301</td>
<td>0.0747</td>
<td>0.0672</td>
</tr>
<tr>
<td>wR (all data)</td>
<td>0.0746</td>
<td>0.0816</td>
<td>0.0787</td>
</tr>
<tr>
<td>GeoF</td>
<td>1.003</td>
<td>0.977</td>
<td>1.019</td>
</tr>
<tr>
<td>Diff.Four.peaks min/max, eÅ$^-3$</td>
<td>-0.500 / 0.609</td>
<td>-0.622 / 0.457</td>
<td>-0.493 / 0.645</td>
</tr>
<tr>
<td>CCDC no.</td>
<td>2097016</td>
<td>2097017</td>
<td>2097018</td>
</tr>
</tbody>
</table>
Table S2. Details for the crystal structure determination of 5b and 5c

<table>
<thead>
<tr>
<th></th>
<th>5b</th>
<th>5c</th>
</tr>
</thead>
<tbody>
<tr>
<td>formula</td>
<td>C_{24}H_{39}FeO_4P_2</td>
<td>C_{22}H_{35}FeO_2P_2</td>
</tr>
<tr>
<td>Fw, g mol⁻¹</td>
<td>509.34</td>
<td>449.29</td>
</tr>
<tr>
<td>cryst. size, mm</td>
<td>0.35 x 0.25 x 0.16</td>
<td>0.27 x 0.20 x 0.02</td>
</tr>
<tr>
<td>color, shape</td>
<td>green, brick</td>
<td>green, plate</td>
</tr>
<tr>
<td>crystal system</td>
<td>triclinic</td>
<td>orthorhombic</td>
</tr>
<tr>
<td>space group</td>
<td>P-1 (No. 2)</td>
<td>Pbca (No. 61)</td>
</tr>
<tr>
<td>a, Å</td>
<td>13.493(18)</td>
<td>15.387(13)</td>
</tr>
<tr>
<td>b, Å</td>
<td>25.671(3)</td>
<td>14.266(11)</td>
</tr>
<tr>
<td>c, Å</td>
<td>38.134(5)</td>
<td>20.780(19)</td>
</tr>
<tr>
<td>α, °</td>
<td>86.404(5)</td>
<td>90</td>
</tr>
<tr>
<td>β, °</td>
<td>87.601(4)</td>
<td>90</td>
</tr>
<tr>
<td>γ, °</td>
<td>79.813(4)</td>
<td>90</td>
</tr>
<tr>
<td>V, Å³</td>
<td>12969(3)</td>
<td>4562(7)</td>
</tr>
<tr>
<td>T, K</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Z, Z’</td>
<td>20, 10</td>
<td>8, 1</td>
</tr>
<tr>
<td>ρ, g cm⁻³</td>
<td>1.304</td>
<td>1.308</td>
</tr>
<tr>
<td>μ, mm⁻¹ (MoKα)</td>
<td>0.731</td>
<td>0.815</td>
</tr>
<tr>
<td>F(000)</td>
<td>5420</td>
<td>1912</td>
</tr>
<tr>
<td>θ range, deg</td>
<td>30.17 – 1.07</td>
<td>22.54 – 21.85</td>
</tr>
<tr>
<td>no. of rflns measd</td>
<td>332470</td>
<td>5687</td>
</tr>
<tr>
<td>Rint</td>
<td>0.1159</td>
<td>0.0666</td>
</tr>
<tr>
<td>no. of rflns unique</td>
<td>75997</td>
<td>2968</td>
</tr>
<tr>
<td>no. of rflns I>2σ(I)</td>
<td>27731</td>
<td>2287</td>
</tr>
<tr>
<td>R (I > 2σ(I))</td>
<td>0.0593</td>
<td>0.0703</td>
</tr>
<tr>
<td>R (all data)</td>
<td>0.1698</td>
<td>0.0983</td>
</tr>
<tr>
<td>wR (I > 2σ(I))</td>
<td>0.1446</td>
<td>0.1635</td>
</tr>
<tr>
<td>wR (all data)</td>
<td>0.1994</td>
<td>0.1784</td>
</tr>
<tr>
<td>GeoF</td>
<td>0.996</td>
<td>1.133</td>
</tr>
<tr>
<td>Diff.Four.peaks min/max, eÅ⁻³</td>
<td>-0.629 / 1.421</td>
<td>-0.498 / 1.241</td>
</tr>
<tr>
<td>CCDC no.</td>
<td>2097019</td>
<td>2097020</td>
</tr>
</tbody>
</table>

EPR Data

Figure S1. X-band EPR spectra of [Fe(κ³P,C,PCP⁶⁺,t-Bu)(CO)₂] (5b) (left) and [Fe(κ³P,C,PCP⁶⁺,t-Bu)(CO)₂] (5c) (right) in toluene glass at 100 K at a microwave frequency of 9.86 GHz. The red line represents a simulation with gₓ = 2.051, gᵧ = 2.027, gẑ = 2.010, Aₓ = 45.0 G, Aᵧ = 39.3 G, and Aẑ = 48.5 G (5b) and gₓ = 2.044, gᵧ = 2.034, gẑ = 1.991, Aₓ = 20.3 G, Aᵧ = 22.5 G, and Aẑ = 14.5 G (5c).
NMR spectra

Figure S2. 1H-NMR spectrum of 1a (250 MHz, C$_6$D$_6$)

Figure S3. 13C(1H) APT NMR spectrum of 1d (63 MHz, C$_6$D$_6$)
Figure S4. 13C{1H} DEPT NMR spectrum of 1d (63 MHz, C$_6$D$_6$)

Figure S5. 31P{1H} NMR spectrum of 1d (101 MHz, C$_6$D$_6$)
Figure S6. 1H NMR spectrum of 2a (400 MHz, CD$_2$Cl$_2$)

Figure S7. 13C(1H) NMR spectrum of 2a (101 MHz, CD$_2$Cl$_2$)
Figure S8. \(^{31}\text{P} \{^{1}\text{H}\} \) NMR spectrum of 2a (162 MHz, CD\(_2\)Cl\(_2\))

Figure S9. \(^{1}\text{H} \) NMR spectrum of 2b (400 MHz, CD\(_2\)Cl\(_2\))
Figure S10. 13C\{1H\} NMR spectrum of 2b (101 MHz, CD$_2$Cl$_2$)

Figure S11. 31P\{1H\} NMR spectrum of 2b (162 MHz, CD$_2$Cl$_2$)
Figure S12. 1H NMR spectrum of 3 (600 MHz, CD$_2$Cl$_2$)

Figure S13. 13C 1H NMR spectrum of 3 (151 MHz, CD$_2$Cl$_2$)
Figure S14. 13C NMR spectrum of 3 (151 MHz, CD$_2$Cl$_2$)

Figure S15. section of the HSQC NMR spectrum of 3 depicting the cross-peak of the agostic C-H bond
Figure S16. 31P{1H} NMR spectrum of 3 (243 MHz, CD$_2$Cl$_2$)

Figure S17. 1H NMR spectrum of 4 (600 MHz, C$_6$D$_6$)
Figure S18. 13C{1H} NMR spectrum of 4 (151 MHz, C₆D₆)

Figure S19. 31P{1H} NMR spectrum of 4 (243 MHz, C₆D₆)