Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2021

Supporting Information for:

Evaluating Electrochemical Accessibility of 4fⁿ5d¹ and 4fⁿ⁺¹ Ln(II) Ions

in (C5H4SiMe3)3Ln and (C5Me4H)3Ln Complexes

Michael T. Trinh, Justin C. Wedal, and William J. Evans*

Department of Chemistry, University of California, Irvine, California 92697-2025, United States

Email: <u>wevans@uci.edu</u>

*To whom correspondence should be addressed.

Table of Contents

Cyclic Voltammetry for:	
Cp' ₃ Y	S3
Cp' ₃ La	S3
Cp' ₃ Ce	S4
Cp' ₃ Pr	S4
[K(crypt)][Cp' ₃ Pr]	S5
Cp' ₃ Nd	S5
Cp' ₃ Sm	S6
[K(crypt)][Cp' ₃ Sm]	S6
Cp' ₃ Eu	S7
[K(crypt)][Cp' ₃ Eu]	S7
Cp'3Gd	S8
Cp' ₃ Tb	S8
Cp' ₃ Dy	S9
Cp' ₃ Ho	S9
Cp'3Er	S10
Cp' ₃ Tm	S10
Cp' ₃ Yb	S11
Cp' ₃ Lu	S11
Cp ^{tet} ₃ La	S12
Cp ^{tet} ₃ Ce	S12
Cp ^{tet} ₃ Pr	S13
Cp ^{tet} ₃ Nd	S13
Cp ^{tet} ₃ Sm	S14
Cp ^{tet} ₃ Gd	S14
Cp ^{tet} ₃ Tb	S15
Cp ^{tet} ₃ Dy	S15
Cp ^{tet} ₃ Ho	S16

Table S1: Experimental and theoretical calculated reduction potentials for the S16 lanthanide ions

References

S17

Figure S1: Cyclic voltammogram of $Cp'_{3}Y$ at v = 200 (black), 400 (red), 600 (green), 800 (yellow) and 1000 (blue) mV/s.

Figure S2: Cyclic voltammogram of Cp'₃La at v = 200 (black), 400 (red), 600 (green), 1000 (blue) and 2000 (purple) mV/s.

Figure S3: Cyclic voltammogram of Cp'₃Ce at v = 200 (black), 400 (red), 600 (green), 800 (yellow) and 1000 (blue) mV/s.

Figure S4: Cyclic voltammogram of Cp'_3Pr at v = 200 (black), 400 (red), 600 (green), 800 (yellow) and 1000 (blue) mV/s.

Figure S5: Cyclic voltammogram of $[K(crypt)][Cp'_3Pr]$ at v = 200 mV/s with internal standard $(C_5Me_5)_2Fe$.

Figure S6: Cyclic voltammogram of Cp'₃Nd at v = 200 (black), 400 (red), 600 (green), 800 (yellow) and 1000 (blue) mV/s.

Figure S7: Cyclic voltammogram of Cp'₃Sm at v = 200 (black), 400 (red), 600 (green), 800 (yellow) and 1000 (blue) mV/s.

Figure S8: Cyclic voltammogram of $[K(crypt)][Cp'_3Sm]$ at v = 200 (black), 400 (red), 600 (green) and 800 (yellow) mV/s.

Figure 9S: Cyclic voltammogram of Cp'₃Eu at v = 200 (black), 400 (red), 600 (green), 800 (yellow) and 1000 (blue) mV/s.

Figure S10: Cyclic voltammogram of $[K(crypt)][Cp'_3Eu]$ at v = 200 (black), 400 (red), 600 (green), and 800 (yellow) mV/s.

Figure S11: Cyclic voltammogram of Cp'₃Gd at v = 200 (black), 400 (red), 600 (green), 800 (yellow) and 1000 (blue) mV/s.

Figure S12: Cyclic voltammogram of $Cp'_{3}Tb$ at v = 200 (black), 400 (red), 600 (green), 800 (yellow) and 1000 (blue) mV/s.

Figure S13: Cyclic voltammogram of Cp'₃Dy at v = 200 (black), 400 (red), 600 (green), 800 (yellow) and 1000 (blue) mV/s.

Figure S14: Cyclic voltammogram of Cp'₃Ho at v = 200 (black), 400 (red), 600 (green), 800 (yellow) and 1000 (blue) mV/s.

Figure S15: Cyclic voltammogram of Cp'₃Er at v = 200 (black), 400 (red), 600 (green), 800 (yellow) and 1000 (blue) mV/s.

Figure S16: Cyclic voltammogram of Cp'₃Yb at v = 200 (black), 400 (red), 600 (green), 800 (yellow) and 1000 (blue) mV/s. The cathodic event at -2.5 V and anodic event at -1.7 V are likely due to electrolyte degradation or decomposition of Cp'₃Yb.

Figure S17: Cyclic voltammogram of $Cp'_{3}Tm$ at v = 200 (black), 400 (red), 800 (yellow) and 1000 (blue) mV/s.

Figure S18: Cyclic voltammogram of Cp'₃Lu at v = 200 (black), 400 (red), 600 (green), and 800 (yellow) mV/s.

Figure S19: Cyclic voltammogram of $Cp^{tet}_{3}La$ at v = 200 mV/s.

Figure S20: Cyclic voltammogram of $Cp^{tet}_{3}Ce$ at v = 200 (black), 400 (red), 600 (green), 800 (yellow), and 1000 (blue) mV/s.

Figure S21: Cyclic voltammogram of $Cp^{tet_3}Pr$ at v = 200 (black), 400 (red), 600 (green), 800 (yellow) and 1000 (blue) mV/s.

Figure S22: Cyclic voltammogram of $Cp^{tet_3}Nd$ at v = 200 (black), 400 (red), 600 (green), and 800 (yellow) mV/s.

Figure S23: Cyclic voltammogram of $Cp^{tet_3}Sm$ at v = 200 (black), 400 (red), 600 (green), 800 (yellow) and 1000 (blue) mV/s.

Figure S24: Cyclic voltammogram of $Cp^{tet_3}Gd$ at v = 200 (black), 400 (red), 600 (green), 800 (yellow) and 1000 (blue) mV/s.

Figure S25: Cyclic voltammogram of $Cp^{tet_3}Tb$ at v = 200 (black), 400 (red), 600 (green), 800 (yellow) and 1000 (blue) mV/s.

Figure S26: Cyclic voltammogram of $Cp^{tet_3}Dy$ at v = 200 (black), 400 (red), 800 (yellow) and 1000 (blue) mV/s.

Figure S27: Cyclic voltammogram of Cp^{tet_3} Ho at v = 200 (black), 400 (red), 600 (green), 800 (yellow) and 1000 (blue) mV/s.

Table S1: Experimental and theoretical calculated Ln(III)/Ln(II) reduction potentials for the lanthanide ions. Values are reported vs Fc⁺/Fc (reported as -0.40 V vs NHE).¹

	Experimental $E_{1/2}$ in Cp' ₃ Ln	Thermochemical estimates ^{2,a}	Thermodynamic estimates ^{3,a}	Atomic spectroscopy
T		2.24	2 4b	estimates ⁺
La	N/A	-3.34	-3.4°	-2.7
Ce	N/A	-3.36	-3.3 ^b	-2.8
Pr	-3.14	-2.63	-2.7	-2.3
Nd	-3.14	-2.22	-2.4	-2.2
Sm	-2.41	-1.17	-1.2	-1.2
Eu	-1.07	0.15	0.1	0.1
Gd	-2.98	-3.42	-3.1 ^b	-3.5
Tb	-2.95	-3.07	-3.1 ^b	-3.3
Dy	-2.96	-2.02	-2.3	-2.2
Но	-3.02	-2.40	-2.5	-2.5
Er	-3.02	-2.56	-2.7	-2.7
Tm	-2.83	-1.87	-1.9	-1.9
Yb	-1.64	-0.64	-0.7	-0.7
Lu	-3.12		-4.2^{b}	

a: Values are for aqueous ions

b: Ln^{2+} (aq) is predicted to be $4f^n5d^1$

References

- 1. N. G. Connelly and W. E. Geiger, Chem. Rev., 1996, 96, 877-910.
- 2. L. R. Morss, Chem. Rev., 1976, 76, 827-841.
- 3. S. G. Bratsch and J. J. Lagowski, J. Phys. Chem., 1985, 89, 3317-3319.
- L. J. Nugent, R. D. Baybarz, J. L. Burnett and J. L. Ryan, J. Phys. Chem., 1973, 77, 1528–1539.