Electronic Supporting Information

Design and synthesis of three new copper coordination polymers:

efficient degradation of organic dye at alkaline pH

Xiaxia Liu, Liping Lu, Miaoli Zhu, Ulli Englert

Fig. S1 IR spectra of ligand and compounds 1–3 (KBr, cm⁻¹).

Fig. S2 PXRD patterns (simulation based on the single crystal structure, experimental, experimental after degradation) for complex **1** in the 2θ range of 5 to 50° .

Fig. S3 PXRD patterns (simulation based on the single crystal structure, experimental, experimental after degradation) for complex 2 in the 2θ range of 5 to 50° .

Fig. S4 PXRD patterns (simulation based on the single crystal structure, experimental, experimental after degradation) for complex **3** in the 2θ range of 5 to 50° .

Fig. S5 TGA curves for compounds 1-3 collected under N₂ atmosphere.

Fig.S6 (a) χ_{M} and $\chi_{M}T$ vs T plots for complex **1**; (b) χ_{M}^{-1} vs T plot for **1**. The solid line represents the best fits.

Fig.S7 (a) χ_{M} and $\chi_{M}T$ vs T plots for complex **2**; (b) χ_{M}^{-1} vs T plot for **2**. The solid line represents the best fits.

Fig.S8 (a) χ_{M} and $\chi_{M}T$ vs T plots for complex **3**; (b) χ_{M}^{-1} vs T plot for **3**. The solid line represents the best fits.

Fig. S9 UV-vis absorption spectra of MB (a) complex **1** (b) complex **3** ([MB] = 10 mg/L, $[H_2O_2] = 50 \text{ mM}$, complex = 5 mg, T = 25 °C, pH = 8). The illustrations are photographs before and after MB degradation.

Fig. S10 Concentration of MB as a function of reaction time; catalysts were removed after 6 minutes. ($[MB] = 10 \text{ mg/L}, [H_2O_2] = 50 \text{ mM}, \text{ complex} = 5 \text{ mg}, \text{T} = 25 \text{ °C}, \text{pH} = 8$).

Fig. S11 Plot of $-\ln(C/C_0)$ vs. time for the pseudo-first-order kinetics curves of the photocatalytic degradation under different initial MB concentrations: (a) complex **1** (b) complex **2** (c) complex **3** ([H₂O₂] = 50 mM, complex = 5 mg, T = 25 °C, pH = 8).

Fig. S12 The photocatalytic degradation rate constants (a) and removal efficiency (b)of complexes **1-3** under different catalyst dosages. ([MB] = 10 mg/L, $[H_2O_2] = 50 \text{ mM}$, T = 25 °C, pH = 8).

Fig. S13 Plot of $-\ln(C/C_0)$ vs. time for the pseudo-first-order kinetics curves of the photocatalytic degradation under different pH:(a) complex **1** (b) complex **2** (c) complex **3**. ([MB] = 10 mg/L, [H₂O₂] = 50 mM, complex = 5 mg, T = 25 °C).

Bond distance (Å)		Bond angle (°)			
Cu1—O18 ⁱⁱ	1.975 (3)	O18 ⁱⁱ —Cu1—O1	170.78 (15)	N6—Cu2—O19 ⁱⁱⁱ	89.84 (13)
Cu1—O1	1.976 (3)	O18 ⁱⁱ —Cu1—N1	88.92 (14)	O4—Cu3—O12	170.62 (14)
Cu1—O17 ⁱⁱ	2.769 (3)	O1—Cu1—N1	92.08 (14)	O4—Cu3—N3	91.76 (13)

Table S1 Selected Bond Angles (°) and Bond Lengths (Å) in 1.

Cu1—N1	2.016 (4)	O18 ⁱⁱ —Cu1—N2	91.36 (15)	O12—Cu3—N3	88.84 (13)
Cu1—N2	2.027 (4)	O1—Cu1—N2	90.37 (14)	O4—Cu3—N4 ^{vi}	88.63 (13)
Cu1—O23	2.249 (5)	N1—Cu1—N2	162.92 (17)	O12—Cu3—N4 ^{vi}	89.38 (14)
Cu2—O20 ^v	1.974 (3)	O18 ⁱⁱ —Cu1—O23	83.31 (19)	N3—Cu3—N4 ^{vi}	171.34 (15)
Cu2—O11	1.974 (3)	O1—Cu1—O23	87.47 (18)	O4—Cu3—O3 ⁱⁱⁱ	102.95 (12)
Cu2—N5 ^{iv}	2.013 (3)	N1—Cu1—O23	97.1 (2)	O12—Cu3—O3 ⁱⁱⁱ	86.26 (13)
Cu2—N6	2.015 (4)	N2—Cu1—O23	99.9 (2)	N3—Cu3—O3 ⁱⁱⁱ	97.01 (13)
Cu2—O19 ⁱⁱⁱ	2.314 (3)	O20 ^v —Cu2—O11	167.03 (13)	N4 ^{vi} —Cu3—O3 ⁱⁱⁱ	91.33 (13)
Cu3—O4	1.951 (3)	O20 ^v —Cu2—N5 ^{iv}	92.09 (13)	O11—Cu2—N6	90.07 (13)
Cu3—O12	1.967 (3)	011—Cu2—N5 ^{iv}	88.36 (13)	N5 ^{iv} —Cu2—N6	174.13 (15)
Cu3—N3	2.015 (4)	O20 ^v —Cu2—N6	88.18 (13)	O20 ^v —Cu2—O19 ⁱⁱⁱ	109.88 (12)
Cu3—N4 ^{vi}	2.020 (4)	O11—Cu2—N6	90.07 (13)	O11—Cu2—O19 ⁱⁱⁱ	82.96 (12)
Cu3—O3 ⁱⁱⁱ	2.257 (3)	N5 ^{iv} —Cu2—N6	174.13 (15)	N5 ^{iv} —Cu2—O19 ⁱⁱⁱ	95.57 (13)
		O20 ^v —Cu2—O19 ⁱⁱⁱ	109.88 (12)	N6—Cu2—O19 ⁱⁱⁱ	89.84 (13)
		O11—Cu2—O19 ⁱⁱⁱ	82.96 (12)	O4—Cu3—O12	170.62 (14)
		N5 ^{iv} —Cu2—O19 ⁱⁱⁱ	95.57 (13)	O4—Cu3—N3	91.76 (13)

Symmetry codes: (ii) -x, -y, -z; (iii) -x+1, -y, -z; (iv) x-1, y, z; (v) x, y-1, z+1; (vi) x+1, y, z

 Table S2 Selected Bond Angles (°) and Bond Lengths (Å) in 2.

Bond distance (Å)		Bond angle (°)			
Cu1—O8 ⁱ	1.943 (3)	O8 ⁱ —Cu1—N4 ⁱⁱ	93.49 (12)	N4 ⁱⁱ —Cu1—O1	93.05 (12)
Cu1—N4 ⁱⁱ	1.991 (3)	O8 ⁱ —Cu1—N1	97.45 (12)	N4 ⁱⁱ —Cu1—N1	153.66 (12)
Cu1—N1	1.996 (3)	08 ⁱ —Cu1—O1	148.49 (11)	N1—Cu1—O1	90.03 (12)
Cu1—O1	2.066 (2)	08 ⁱ —Cu1—O2	92.40 (11)	N1—Cu1—O2	98.81 (12)
Cu1—O2	2.551 (2)	N4 ⁱⁱ —Cu1—O2	104.60 (12)	01—Cu1—O2	56.98 (11)

Symmetry codes: (i) x-1, y, z; (ii) x, y, z-1.

 Table S3 Selected Bond Angles (°) and Bond Lengths (Å) in 3.

Bond distance (Å)		Bond angle (°)			
	1		T		
Cu1—O5 ⁱ	1.965 (3)	O5 ⁱ —Cu1—O1	164.35 (15)	N1—Cu1—O6 ⁱⁱⁱ	86.64 (15)
Cu1—O1	1.997 (3)	O5 ⁱ —Cu1—N1	87.53 (15)	N4 ⁱⁱ —Cu1—O6 ⁱⁱⁱ	96.79 (15)
Cu1—N1	2.006 (4)	O1—Cu1—N1	88.72 (15)	O12 ^{iv} —Cu2—O12	180.0
Cu1—N4 ⁱⁱ	2.012 (4)	O5 ⁱ —Cu1—N4 ⁱⁱ	92.31 (15)	O12 ^{iv} —Cu2—N5	90.9 (2)
Cu1—O6 ⁱⁱⁱ	2.317 (4)	O1—Cu1—N4 ⁱⁱ	90.50 (15)	012—Cu2—N5	89.1 (2)

Cu2—O12 ^{iv}	1.933 (4)	N1—Cu1—N4 ⁱⁱ	176.45 (17)	012 ^{iv} —Cu2—N5 ^{iv}	89.1 (2)
Cu2—O12	1.933 (4)	O5 ⁱ —Cu1—O6 ⁱⁱⁱ	107.05 (14)	012—Cu2—N5 ^{iv}	90.9 (2)
Cu2—N5	1.998 (5)	O1—Cu1—O6 ⁱⁱⁱ	87.88 (14)	N5—Cu2—N5 ^{iv}	180.0
Cu2—N5 ^{iv}	1.999 (5)				

Symmetry codes: (i) x-1, y, z; (ii) x, y, z-1; (iii) -x+2, -y+2, -z+1; (iv) -x+2, -y+1, -z+1.

Table S4 Results of leached copper in solution after degradation

Catalyst	Cu/mg·L ⁻¹
Complex 1	4.1
Complex 2	1.3
Complex 3	2.0