Electronic Supplementary Information

Hydrostannylation of Carbon Dioxide by a Hydridostannylene Molybdenum Complex

Qihao Zhu, James C. Fettinger, and Philip P. Power*

Department of Chemistry, University of California, Davis, California 95616, United States

Table of contents

1.	Comput	ational de	tails for 1 .								S2
2.	Table S1. Experimental and Calculated Bond Lengths and Bond Angles of 1.S2										
3.	Table	S 2.	Calculated	CO	stretchi	ng	freque	encies(s	caled)	fo	or 1.
	S2										
4.	Figure S	S1. Calcul	ated IR spectru	m of 1 .						S3	
5.	Table S	3. Selecte	d X-ray Crystal	lographic data	a for 1-3 .						S3
6.	Figure S	S2. ¹ H NM	IR spectrum of	1 in C_6D_6 at 2	98K.						S5
7.	Figure	S3. ${}^{13}C{}^{1}E$	I} NMR spectru	$1 \text{ m of } 1 \text{ in } C_6 \mathbf{I}$	D_6 at 298	Κ.					S5
8.	Figure	S4. 119 Sn{	¹ H} NMR spec	trum of 1 in C	$_{6}D_{6}$ at 29	8K.					S 6
9.	Figure S	S5. 119Sn Ì	NMR spectrum	of 1 in C_6D_6 a	t 298K.						S6
10.	Figure	S6. ¹ H NM	IR spectrum of	2 in C_6D_6 at 2	98K.						S 7
11.	Figure	S7. ¹³ C{ ¹ H	I} NMR spectr	$\operatorname{Im} \operatorname{of} 2 \operatorname{in} \operatorname{C}_6 \mathbf{I}$	D_6 at 298	Κ.					S 7
12.	Figure	S8. ¹¹⁹ Sn{	¹ H} NMR spec	trum of 2 in C	$_{6}D_{6}$ at 29	8K.					S 8
13.	Figure S	S9. ¹ H NM	IR spectrum of	3 in C_6D_6 at 2	98K.						S 8
14.	Figure	S10.	$^{13}C{^{1}H}$	NMR sp	ectrum	of	3	in	C_6D_6	at	298K.
	S9			_							
15.	Figure	S11.	$^{119}Sn\{^{1}H\}$	NMR s	pectrum	of	3	in	C_6D_6	at	298K.
	S9				-						
16.	Figure	S12. ¹ H	NMR spectru	m of 3 with	HBpin	(3 hou	urs afte	er mixi	ng) in	C_6D_6	at 298K.
	S10										
17.	Figure	S13. ¹¹ B	{ ¹ H} NMR spe	ctrum of 3 w	vith HBp	in (3 ł	nours a	fter mix	ing) in	C_6D_6	at 298K.
	S10				-						
18.	Figure	S14. ¹¹ B	NMR spectru	m of 3 with	1 HBpin	(3 ho	urs afte	er mixi	ng) in	C_6D_6	at 298K.
	S11										
19.	Figure	S15 .	UV-vis	spectrum	of	1	in	hexa	anes	at	298K.
	S11			-							
20.	Figure	S16.	UV-vis	spectrum	of	2	in	hexa	anes	at	298K.
	S12			-							
21.	Figure	S17.	UV-vis	spectrum	of	3	in	hexa	anes	at	298K.
	S12			-							
22.	Figure S	S18. ATR	-FTIR spectrun	n of 1 at 298K							S13
23.	Figure	S19. ATR	-FTIR spectrun	n of 2 at 298K							S13
24.	Figure	S20. ATR	-FTIR spectrun	n of 3 at 298K							S14
	-		•								

- 25. Figure S21. Photo of addition HBpin into 3 in C_6D_6 at 298K. S15
- 26. Figure S21. Photo of addition HBpin into 3 (3 hours after mixing) in C₆D₆ at 298K. S15
 27. References S15

Computational details.

The structure was subjected to refinement at the DFT level of theory, with the B3LYP hybrid exchange functional¹⁻⁴ using Ahlrichs polarized basis set def2-TZVP⁵. For Sn, the effective core potential (ECP) basis set⁶ with similar valence quality was used. In addition, dispersion correction with Becke-Johnson damping (D3BJ)⁷. ⁸ was used. The resolution of identity approximation was employed with auxiliary basis set def2-TZVP/C^{9, 10} in order to speed up the calculations. Phenyl was used in substitution of Ar^{iPr6} in the calculation of IR frequencies to speed up calculation. The reported IR frequencies are scaled by 0.986 as suggested by Truhlar. All calculations were carried out using the ORCA 4.2.1 quantum chemistry package.¹¹

Table S1. Experimental and Calculated Bond Lengths and Bond Angles of 1

	Bond lengths (Å)	Bond lengths (Å)	G 11	Bond angles (°)	Bond angles (°)
Compound I	Expt.	Calc.	Compound I	Expt.	Calc.
Sn(1)-C(1)	2.158(2)	2.16853	Mo(1)-Sn(1)-C(1)	140.11(6)	135.0253
Sn(1)-Mo(1)	2.7157(4)	2.72286	H(1)-Sn(1)-C(1)	108.3(6)	100.3012
Sn(1)-H(1)	1.93(2)	1.74977	H(1)-Sn(1)-Mo(1)	111.4(6)	124.6165
Mo(1)-C(38)	2.050(3)	2.04503	Sn(1)-Mo(1)-C(40)	176.48(9)	179.1233
Mo(1)-C(39)	2.053(3)	2.05207	C(38)-Mo(1)-C(40)	91.25(12)	92.8569
Mo(1)-C(40)	2.018(3)	2.00717	Sn(1)-Mo(1)-C(38)	86.08(8)	86.5436
Mo(1)-C(41)	2.050(3)	2.04461	Mo(1)-C(40)-O(40)	179.5(4)	179.8013

 Table S2. Scaled CO stretching frequencies (scaled by 0.986).

 $1 (cm^{-1})$

607	
1762	
1998	
2013	
2104	

Figure S1. Calculated IR spectrum of 1.

 Table S3. Selected X-ray Crystallographic data for 1-3.

Compound	1	2	2	
Empirical formula	C ₄₁ H ₅₀ MoO ₅ Sn	C ₃₉ H ₄₆ MoO ₆ Sn	$C_{42}H_{50}MoO_7Sn$	
Formula weight	837.44	825.39	881.45	
Temperature	90(2) K	90(2) K	90(2) K	
Wavelength	0.71073 Å	0.71073 Å	0.71073 Å	
Crystal system	Triclinic	Monoclinic	Monoclinic	

Space group	P-1	P2 ₁ /c	P2 ₁ /m	
Crystal color and habit	Yellow block	Yellow plate	Colorless block	
a(Å)	10.0036(9)	14.7682(5)	8.6205(6)	
b(Å)	13.2565(12)	10.7848(4)	18.6744(13)	
c(Å)	15.0972(13)	23.6781(10)	12.8381(9)	
α(°)	94.4823(14)	90	90	
β(°)	92.9268(14)	95.0100(10)	90.8178(10)	
γ(°)	96.3788(14)	90	90	
Density (calculated) (Mg/m ³)	1.405	1.459	1.417	
F(000)	856	1680	900	
Crystal size(mm ³)	0.522 x 0.368 x 0.354	0.334 x 0.288 x 0.285	0.476 x 0.456 x 0.268	
θ range(°)	1.972 to 27.487°	2.076 to 25.249°	1.925 to 30.631°	
Reflections collected	17915	16327	24632	
Independent reflections	9055 [R(int) = 0.0163]	6802 [R(int) = 0.0549]	6555 [R(int) = 0.0281]	
Observed reflections $(I > 2\sigma(I))$	7878	4769	5706	
Completeness to $2\theta = 25.242^{\circ}$	99.9 %	100.0 %	100.0 %	
Goodness-of-fit on F ²	1.045	1.018	1.078	
Final R indices	R1 = 0.0313,	R1 = 0.0417,	R1 = 0.0248,	
(I>2σ(I))	wR2 = 0.0794	wR2 = 0.0829	wR2 = 0.0607	
R indices (all data)	R1 = 0.0368,	R1 = 0.0702,	R1 = 0.0313,	

wR2 = 0.0817	wR2 = 0.0954	wR2 = 0.0642

Figure S2. ¹H NMR spectrum of 1 in C_6D_6 at 298K.

Figure S3. ${}^{13}C{}^{1}H$ NMR spectrum of 1 in C₆D₆ at 298K.

Figure S4. ¹¹⁹Sn $\{^{1}H\}$ NMR spectrum of 1 in C₆D₆ at 298K.

Figure S5. ¹¹⁹Sn NMR spectrum of 1 in C₆D₆ at 298K.

Figure S6. ¹H NMR spectrum of **2** in C_6D_6 at 298K.

Figure S7. ¹³C $\{^{1}H\}$ NMR spectrum of 2 in C₆D₆ at 298K.

Figure S8. ¹¹⁹Sn $\{^{1}H\}$ NMR spectrum of 2 in C₆D₆ at 298K.

Figure S9. ¹H NMR spectrum of 3 in C_6D_6 at 298K.

Figure S10. ${}^{13}C{}^{1}H$ NMR spectrum of 3 in C₆D₆ at 298K.

Figure S11. ¹¹⁹Sn $\{^{1}H\}$ NMR spectrum of 3 in C₆D₆ at 298K.

Figure S12. ¹H NMR spectrum of 3 with HBpin (3 hours after mixing) in C₆D₆ at 298K.

Figure S13. ¹¹B{¹H} NMR spectrum of 3 with HBpin (3 hours after mixing) in C_6D_6 at 298K.

Figure S14. ¹¹B NMR spectrum of 3 with HBpin (3 hours after mixing) in C₆D₆ at 298K.

Figure S15. UV-vis spectrum of 1 in hexanes $(2.3*10^{-4} \text{ M})$ at 298K.

Figure S16. UV-vis spectrum of **2** in hexanes (6.0*10⁻⁵ M) at 298K.

Figure S17. UV-vis spectrum of 3 in hexanes $(5.4*10^{-5} \text{ M})$ at 298K.

Figure S18. ATR-FTIR spectrum of 1 at 298K.

Figure S19. ATR-FTIR spectrum of 2 at 298K.

Figure S20. ATR-FTIR spectrum of 3 at 298K.

Figure S21. Photo of addition HBpin into 3 in C_6D_6 at 298K.

Figure S22. Photo of addition HBpin into 3 (3 hours after) in C_6D_6 at 298K.

References

- 1. A. D. Becke, J. Chem. Phys., 1993, 98, 1372-1377.
- 2. C. Lee, W. Yang and R. G. Parr, *Phys. Rev. B*, 1988, **37**, 785-789.
- 3. S. H. Vosko, L. Wilk and M. Nusair, Can. J. Phys., 1980, 58, 1200-1211.
- 4. P. J. Stephens, F. J. Devlin, C. F. Chabalowski and M. J. Frisch, *J. Phys. Chem.*, 1994, **98**, 11623-11627.
- 5. F. Weigend and R. Ahlrichs, *Phys. Chem Chem. Phys.*, 2005, 7, 3297-3305.
- 6. B. Metz, H. Stoll and M. Dolg, J. Chem. Phys., 2000, 113, 2563-2569.
- 7. S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104.
- 8. S. Grimme, S. Ehrlich and L. Goerigk, J. Comput. Chem., 2011, 32, 1456-1465.
- 9. F. Weigend, *Phys. Chem Chem. Phys.*, 2006, **8**, 1057-1065.
- 10. A. Hellweg, C. Hättig, S. Höfener and W. Klopper, Theor. Chem. Acc., 2007, 117, 587-597.
- 11. F. Neese, WIREs Comput. Mol. Sci., 2012, 2, 73-78.