#### Supplementary Information

# Evaluation of Sn(II) Aminoalkoxide Precursors for Atomic Layer Deposition of SnO Thin Films.

James D. Parish,<sup>a</sup> Michael W. Snook,<sup>a</sup> and Andrew L. Johnson,<sup>a</sup>

<sup>a</sup> Department of Chemistry, University of Bath. Claverton Down, Bath, BA2 7AY, UK. E-mail: <u>A.L.Johnson@bath.ac.uk</u>

#### Contents

| Table 1S: Crystal and structure refinement data for 1a-d and 2a-d.                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Table 2S: Crystal and structure refinement data for 3a-d3                                                                                                                                                                                                                                                                                                         |
| Additional Crystallographic Details4                                                                                                                                                                                                                                                                                                                              |
| <b>Figure S1</b> : Molecular structure of $[(Me_2NCH_2C(H)MeO)Sn(\mu-NMe_2)]_2$ ( <b>1b</b> ). Thermal ellipsoids are shown at 50% probability. Symmetry transformations used to generate equivalent atoms: 1-X, 1-Y,1-Z                                                                                                                                          |
| Figure S2: Molecular structure of $[{(Me_3Si)_2N}Sn(\mu-OCH_2CH_2Me_2)]_2$ (2a). Thermal ellipsoids are shown at 50% probability                                                                                                                                                                                                                                  |
| <b>Figure S3</b> : Molecular structure of $[{(Me_3Si)_2N}Sn(\mu-OC(H)MeCH_2Me_2)]_2$ ( <b>2b</b> ). Thermal ellipsoids are shown at 50% probability. Hydrogen atoms have been omitted for clarity. Disorder in the ligand backbone [N(3), C(21)-C(25) and N(3A), C(21A)-C(25A)] and the HMDS ligand [C(15)-C(17) and C(15A)-C(17A)] have been omitted for clarity |
| <b>Figure S4</b> : Molecular structure of $[Sn(OCH_2CH_2Me_2)_2]$ ( <b>3a</b> ). Thermal ellipsoids are shown at 50% probability. Symmetry transformations used to generate equivalent atoms: 1-X,1-Y, Z                                                                                                                                                          |
| Table 3S – Evaporation rates of of [Sn{dmae}] (3a), [Sn{dmap}] (3b), [Sn{dmamp}] (3c) and         [Sn{Fdmamp}] (3d) at 70°C                                                                                                                                                                                                                                       |
| 9                                                                                                                                                                                                                                                                                                                                                                 |
| References                                                                                                                                                                                                                                                                                                                                                        |

| Compound reference<br>Chemical formula<br>Formula Mass |                      | $\begin{array}{c} \textbf{1b} \\ {\rm C}_{14}{\rm H}_{36}{\rm N}_{4}{\rm O}_{2}{\rm Sn}_{2} \\ {\rm 529.85} \end{array}$ | $\begin{array}{c} \textbf{1c} \\ C_{16}H_{40}N_4O_2Sn_2 \\ 557.90 \end{array}$ | $\begin{array}{c} \textbf{1d} \\ C_{16}H_{28}F_{12}N_4O_2Sn_2 \\ 773.80 \end{array}$ | $\begin{array}{c} \textbf{2a} \\ C_{20}H_{56}N_4O_2Si_4Sn_2 \\ 734.42 \end{array}$ | $\begin{array}{c} \textbf{2b} \\ C_{22}H_{60}N_4O_2Si_4Sn_2 \\ 762.48 \end{array}$ | <b>2c</b><br>C <sub>24</sub> H <sub>64</sub> N <sub>4</sub> O <sub>2</sub> Si <sub>4</sub> Sn <sub>2</sub><br>790.53 | $\begin{array}{c} \textbf{2d} \\ C_{12}H_{26}F_6N_2OSi_2Sr \\ 503.22 \end{array}$ |
|--------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Crystal system                                         | Monoclinic           | Triclinic                                                                                                                | Monoclinic                                                                     | Monoclinic                                                                           | Triclinic                                                                          | Orthorhombic                                                                       | Monoclinic                                                                                                           | Triclinic                                                                         |
| a/Å                                                    | 6.78330(10)          | 7.5712(4)                                                                                                                | 9.2945(3)                                                                      | 12.5872(3)                                                                           | 8.7579(4)                                                                          | 20.53720(10)                                                                       | 8.6975(5)                                                                                                            | 7.06130(10)                                                                       |
| <i>b</i> /Å                                            | 17.20280(10)         | 8.6744(5)                                                                                                                | 11.9266(4)                                                                     | 8.5519(2)                                                                            | 8.9319(4)                                                                          | 12.18560(10)                                                                       | 14.292(3)                                                                                                            | 8.48480(10)                                                                       |
| c/Å                                                    | 8.14230(10)          | 9.2638(4)                                                                                                                | 10.7094(4)                                                                     | 12.5367(3)                                                                           | 23.8923(19)                                                                        | 14.37850(10)                                                                       | 15.194(3)                                                                                                            | 18.7724(2)                                                                        |
| $\alpha / ^{\circ}$                                    | 90                   | 73.154(5)                                                                                                                | 90                                                                             | 90                                                                                   | 80.516(5)                                                                          | 90                                                                                 | 90                                                                                                                   | 94.6970(10)                                                                       |
| β/°                                                    | 95.9880(10)          | 74.104(5)                                                                                                                | 100.737(4)                                                                     | 100.094(3)                                                                           | 86.651(5)                                                                          | 90                                                                                 | 93.032(11)                                                                                                           | 98.7470(10)                                                                       |
| γ/°                                                    | 90                   | 68.138(5)                                                                                                                | 90                                                                             | 90                                                                                   | 68.460(4)                                                                          | 90                                                                                 | 90                                                                                                                   | 110.7630(10)                                                                      |
| Unit cell volume/Å3                                    | 944.955(19)          | 530.90(5)                                                                                                                | 1166.37(7)                                                                     | 1328.62(6)                                                                           | 1714.68(18)                                                                        | 3598.34(4)                                                                         | 1886.0(5)                                                                                                            | 1028.16(2)                                                                        |
| Temperature/K                                          | 150(2)               | 150(2)                                                                                                                   | 150(2)                                                                         | 150(2)                                                                               | 150(2)                                                                             | 150(2)                                                                             | 150(2)                                                                                                               | 150(2)                                                                            |
| Space group                                            | $P2_1/n$             | PError!                                                                                                                  | $P2_1/n$                                                                       | $P2_{1}/c$                                                                           | PError!                                                                            | $Pca2_1$                                                                           | $P2_{1}/n$                                                                                                           | PError!                                                                           |
| No. of formula unit per unit cell, Z                   | <sup>15</sup> 2      | 1                                                                                                                        | 2                                                                              | 2                                                                                    | 2                                                                                  | 4                                                                                  | 2                                                                                                                    | 2                                                                                 |
| Radiation type                                         | Cu Ka                | Cu Ka                                                                                                                    | Μο Κα                                                                          | Cu Ka                                                                                | Μο Κα                                                                              | Cu Ka                                                                              | Μο Κα                                                                                                                | Cu Ka                                                                             |
| Absorption coefficient, $\mu$ /mm <sup>-1</sup>        | 21.080               | 18.795                                                                                                                   | 2.156                                                                          | 15.946                                                                               | 1.618                                                                              | 12.523                                                                             | 1.476                                                                                                                | 11.530                                                                            |
| No. of reflection measured                             | <sup>is</sup> 18198  | 3776                                                                                                                     | 7109                                                                           | 9233                                                                                 | 7177                                                                               | 35425                                                                              | 21534                                                                                                                | 34240                                                                             |
| No. of independen<br>reflections                       | <sup>nt</sup> 1884   | 2104                                                                                                                     | 2261                                                                           | 2647                                                                                 | 7177                                                                               | 6731                                                                               | 4216                                                                                                                 | 4091                                                                              |
| R <sub>int</sub>                                       | 0.0404               | 0.0224                                                                                                                   | 0.0542                                                                         | -                                                                                    | -                                                                                  | 0.0390                                                                             | 0.0347                                                                                                               | 0.0419                                                                            |
| Final $R_1$ values $(I \ge 2\sigma(I))$                | >0.0173              | 0.0297                                                                                                                   | 0.0339                                                                         | 0.0425                                                                               | 0.0443                                                                             | 0.0426                                                                             | 0.0238                                                                                                               | 0.0323                                                                            |
| Final $wR(F^2)$ value<br>$(I > 2\sigma(I))$            | <sup>es</sup> 0.0431 | 0.0792                                                                                                                   | 0.0538                                                                         | 0.1362                                                                               | 0.1049                                                                             | 0.1115                                                                             | 0.0456                                                                                                               | 0.0845                                                                            |
| Final $R_1$ values (al data)                           | <sup>11</sup> 0.0183 | 0.0304                                                                                                                   | 0.0462                                                                         | 0.0567                                                                               | 0.0461                                                                             | 0.0430                                                                             | 0.0288                                                                                                               | 0.0323                                                                            |
| Final $wR(F^2)$ value (all data)                       | <sup>ss</sup> 0.0437 | 0.0799                                                                                                                   | 0.0606                                                                         | 0.1385                                                                               | 0.1072                                                                             | 0.1119                                                                             | 0.0473                                                                                                               | 0.0845                                                                            |
| Goodness of fit on F                                   | 721.048              | 1.103                                                                                                                    | 1.036                                                                          | 1.095                                                                                | 1.085                                                                              | 1.065                                                                              | 1.067                                                                                                                | 1.153                                                                             |
| Flack parameter                                        | -                    | -                                                                                                                        | -                                                                              | -                                                                                    | -                                                                                  | 0.34(12)                                                                           | -                                                                                                                    | -                                                                                 |
| CSD Number                                             | 2055540              | 2055535                                                                                                                  | 2055536                                                                        | 2055538                                                                              | 2055542                                                                            | 2055545                                                                            | 2055534                                                                                                              | 2055544                                                                           |

## Table 1S: Crystal and structure refinement data for 1a-d and 2a-d.

## Table 2S: Crystal and structure refinement data for 3a-d.

| Compound reference<br>Chemical formula<br>Formula Mass | <b>3a</b><br>C <sub>8</sub> H <sub>20</sub> N <sub>2</sub> O <sub>2</sub> Sn<br>294.95 | $\begin{array}{c} \textbf{3b} \\ C_{10}H_{24}N_2O_2Sn \\ 323.00 \end{array}$ | $\begin{array}{c} \textbf{3c} \\ C_{12}H_{28}N_2O_2Sn \\ \textbf{351.05} \end{array}$ | $\begin{array}{c} \textbf{3d} \\ C_{12}H_{16}F_{12}N_2O_2Sn \\ 566.96 \end{array}$ |
|--------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Crystal system                                         | Orthorhombic                                                                           | Monoclinic                                                                   | Orthorhombic                                                                          | Monoclinic                                                                         |
| a/Å                                                    | 11.8081(2)                                                                             | 11.7352(4)                                                                   | 8.1592(3)                                                                             | 18.5031(2)                                                                         |
| b/Å                                                    | 10.1306(2)                                                                             | 10.3182(3)                                                                   | 13.8664(5)                                                                            | 8.29960(10)                                                                        |
| c/Å                                                    | 10.0735(2)                                                                             | 12.0111(4)                                                                   | 14.1626(5)                                                                            | 12.5214(2)                                                                         |
| $\alpha/^{\circ}$                                      | 90                                                                                     | 90                                                                           | 90                                                                                    | 90                                                                                 |
| β/°                                                    | 90                                                                                     | 95.166(3)                                                                    | 90                                                                                    | 94.4840(10)                                                                        |
| $\gamma^{\prime \circ}$                                | 90                                                                                     | 90                                                                           | 90                                                                                    | 90                                                                                 |
| Unit cell volume/Å3                                    | 1205.02(4)                                                                             | 1448.47(8)                                                                   | 1602.34(10)                                                                           | 1917.00(4)                                                                         |
| Temperature/K                                          | 150(2)                                                                                 | 150(2)                                                                       | 150(2)                                                                                | 150(2)                                                                             |
| Space group                                            | $Aba_2$                                                                                | C2/c                                                                         | $P2_{1}2_{1}2_{1}$                                                                    | $P2_{1}/c$                                                                         |
| No. of formula uni per unit cell, Z                    | ts <sub>4</sub>                                                                        | 4                                                                            | 4                                                                                     | 4                                                                                  |
| Radiation type                                         | Μο Κα                                                                                  | Μο Κα                                                                        | Μο Κα                                                                                 | Cu Ka                                                                              |
| Absorption coefficier $\mu/\text{mm}^{-1}$             | <sup>1t</sup> ,2.097                                                                   | 1.752                                                                        | 1.590                                                                                 | 11.814                                                                             |
| No. of reflection measured                             | <sup>ns</sup> 32894                                                                    | 6274                                                                         | 13388                                                                                 | 13270                                                                              |
| No. of independe reflections                           | <sup>nt</sup> 1410                                                                     | 1660                                                                         | 3800                                                                                  | 3815                                                                               |
| R <sub>int</sub>                                       | 0.0673                                                                                 | 0.0303                                                                       | 0.0348                                                                                | 0.0343                                                                             |
| Final $R_I$ values $(I = 2\sigma(I))$                  | >0.0255                                                                                | 0.0195                                                                       | 0.0252                                                                                | 0.0339                                                                             |
| Final $wR(F^2)$ values $> 2\sigma(I)$ )                | ( <i>I</i> <sub>0.0509</sub>                                                           | 0.0418                                                                       | 0.0422                                                                                | 0.0894                                                                             |
| Final $R_1$ values (a data)                            | <sup>all</sup> 0.0287                                                                  | 0.0212                                                                       | 0.0283                                                                                | 0.0353                                                                             |
| Final $wR(F^2)$ values (a data)                        | <sup>all</sup> 0.0521                                                                  | 0.0424                                                                       | 0.0430                                                                                | 0.0909                                                                             |
| Goodness of fit on $F^2$                               | 1.211                                                                                  | 1.072                                                                        | 1.051                                                                                 | 1.044                                                                              |
| Flack parameter                                        | 0.47(8)                                                                                | -                                                                            | 0.16(3)                                                                               | -                                                                                  |
| CSD Number                                             | 2055537                                                                                | 2055541                                                                      | 2055543                                                                               | 2055539                                                                            |

Additional Crystallographic Details

1d: The data pertaining to the structure of 1d were integrated to take account of twinning. The twin fractions are in a 13:87 ratio and, while the final residuals are not as low as one might wish, the structural assignments is unambiguous. The diffraction maxima became very smeared at higher Bragg angles for this sample.



**Figure S1**: Molecular structure of  $[(Me_2NCH_2C(H)MeO)Sn(\mu-NMe_2)]_2$  (**1b**). Thermal ellipsoids are shown at 50% probability. Symmetry transformations used to generate equivalent atoms: 1-X, 1-Y,1-Z.



Figure S2: Molecular structure of  $[{(Me_3Si)_2N}Sn(\mu-OCH_2CH_2Me_2)]_2$  (2a). Thermal ellipsoids are shown at 50% probability.



**Figure S3**: Molecular structure of  $[{(Me_3Si)_2N}Sn(\mu-OC(H)MeCH_2Me_2)]_2$  (**2b**). Thermal ellipsoids are shown at 50% probability. Hydrogen atoms have been omitted for clarity. Disorder in the ligand backbone [N(3), C(21)-C(25) and N(3A), C(21A)-C(25A)] and the HMDS ligand [C(15)-C(17) and C(15A)-C(17A)] have been omitted for clarity.

Supplementary Information



**Figure S4**: Molecular structure of  $[Sn(OCH_2CH_2Me_2)_2]$  (**3a**). Thermal ellipsoids are shown at 50% probability. Symmetry transformations used to generate equivalent atoms: 1-X,1-Y, Z.

**Table 3S** – Evaporation rates of of  $[Sn\{dmae\}_2]$  (**3a**),  $[Sn\{dmap\}_2]$  (**3b**),  $[Sn\{dmamp\}_2]$ (**3c**) and  $[Sn\{Fdmamp\}_2]$  (**3d**) at 70°C.

|          | 1                                                         |
|----------|-----------------------------------------------------------|
| Compound | Evaporation rate (µg min <sup>-1</sup> cm <sup>-2</sup> ) |
| 3a       | 33.7                                                      |
| 3b       | 55.0                                                      |
| 3с       | 118.7                                                     |
| 3d       | 36.8                                                      |
|          |                                                           |

### References

[1] J. H. Han, Y. J. Chung, B. K. Park, S. K. Kim, H.-S. Kim, C. G. Kim, T.-M. Chung, *Chemistry of Materials* **2014**, *26*, 6088-6091.