Medicinal Au(I) compounds targeting urease as prospective antimicrobial agents: unveiling the structural basis for enzyme inhibition SUPPLEMENTARY INFORMATION

Luca Mazzei,^{a,*} Lara Massai^b Michele Cianci,^c Luigi Messori,^b Stefano Ciurli^{a,*}

^a Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Giuseppe Fanin 40, I-40127 Bologna (Italy)

^b Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino (Italy)

^c Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, I-60131 Ancona (Italy)

Luca Mazzei:	ORCID 0000-0003-1335-9365
Lara Massai:	ORCID 0000-0003-0765-1802
Michele Cianci:	ORCID 0000-0001-5607-6061
Luigi Messori:	ORCID 0000-0002-9490-8014
Stefano Ciurli:	ORCID 0000-0001-9557-926X

Keywords: Nickel; urease; X-ray crystal structure; gold; phosphine; enzyme inhibition

* Corresponding authors: <u>luca.mazzei2@unibo.it</u>, stefano.ciurli@unibo.it

Table 1-SI. Data collection, processing and refinement statistics for the X-ray crystal structures of SPU co-crystallized in the presence of Au(PEt₃)I (**3**, PDB code 7P7N) and Au(PEt₃)₂Cl (**4**, PDB code 7P7O).

Data collection	7P7N Au(PEt ₂)] (3)	$7P7O$ $Au(PEt_2) \sim C1(4)$	
Wavelength (Å)	0.9	762	
Detector	DECTRIS PILATUS 6M		
Crystal-to-Detector distance (mm)	269.4		
Oscillation angle (degrees)	0.100		
Number of images	1800		
Space group	P6 ₃ 22		
Unit cell (a, b, c, Å)	131.6 131.6 189.2	131.8, 131.8, 189.4	
Resolution range (Å) ^a	114.0–1.80 (1.83–1.80)	114.1–1.87 (1.90–1.87)	
Total number of reflections ^a	1180987 (61039)	1400616 (79653)	
Unique reflections ^a	89759 (4534)	80498 (4557)	
Multiplicity ^a	13.2 (13.5)	17.4 (17.5)	
Completeness ^a (%)	100.0 (100.0)	100.0 (100.0)	
R _{sym} ^{a,b} (%)	14.2 (230.0)	15.8 (300.1)	
$R_{pim}^{a,c}$ (%)	5.8 (93.1)	5.0 (108.0)	
Mean I half-set correlation CC(1/2) ^a	0.999 (0.694)	0.999 (0.744)	
Mean I/σ(I) ^a	17.0 (1.5)	17.9 (1.5)	
Refinement statistics			
Number of monomers in the asymmetric unit	3 (αβγ)	3 (αβγ)	
R _{factor} ^d (%)	14.7	16.3	
R _{free} ^d (%)	17.7	20.4	
Cruickshank's DPI for coordinate error e based on $R_{factor}\left(\mathring{A}\right) ^{e}$	0.093	0.116	
Wilson plot B-factor (Å ²)	25.3	26.9	
Average all atom B-factor ^f (Å ²)	31.7	38.9	
B-factor ^f for the Ni atoms (Å ²)	31.6; 30.3	36.1; 36.7	
RMS (bonds) ^d	0.01	0.01	
RMS (angles) ^d	1.69	1.63	
Total number of atoms	6937	6879	
Total number of water molecules	549	469	
Solvent content (%)	53.2	53.6	
Matthews Coefficient (Å ³ /Da)	2.63	2.65	
Ramachandran plot ^d			
Favored regions (%)	95.5	95.6	
Additionally allowed regions (%)	3.7	3.7	
Disallowed regions (%)	0.8	0.7	

^a Highest resolution bin in parentheses;

$$R_{sym} = \sum_{hkl} \sum_{j} |I_j - \langle I \rangle| / \sum_{hkl} \sum_{j} I_j$$
where I is the intensity of a reflection, and $\langle I \rangle$ is the mean intensity of all symmetry related reflections j; ^c

$$R_{p.i.m.} = \sum_{hkl} \left\{ [1/(N-1)]^{1/2} \sum_{i} |I_j - \langle I \rangle| \right\} / \sum_{hkl} \sum_{j} I_j$$
where I is the intensity of a reflection, and $\langle I \rangle$ is the mean intensity of all symmetry related

 $\frac{1}{hkl}$ $\frac{1}{j}$ $\frac{1}{hkl}$ $\frac{1}{j}$, where I is the intensity of a reflection, and $\langle I \rangle$ is the mean intensity of all symmetry related reflections j, and N is the multiplicity^[13]; dTaken from REFMAC; R_{free} is calculated using 5% of the total reflections that were randomly selected and excluded from refinement;

$$DPI = R_{factor} \cdot D_{max} \cdot compl^{-\frac{1}{3}} \sqrt{\frac{N_{atoms}}{(N_{refl} - N_{param})}}$$

 $\int_{c} \frac{DrI - N_{factor} \cdot D_{max} \cdot compt}{\sqrt{(N_{refl} - N_{params})}}, \text{ where } N_{atoms} \text{ is the number of the atoms included in the refinement, } N_{refl} \text{ is the number of the reflections included in the refinement, } D_{max} \text{ is the maximum resolution of reflections included in the refinement, } compl \text{ is the completeness of the observed data, and for isotropic refinement, } N_{params} \approx 4N_{atoms};$

^fTaken from BAVERAGE.

Table 2-SI. Selected distances (Å) and angles (°) around the Ni(II) ions in the crystal structures of SPU co-crystallized in the presence of Au(PEt₃)I (**3**, PDB code 7P7N) and Au(PEt₃)₂Cl (**4**, PDB code 7P7O). The same parameters reported for the structures of native (PBD 4CEU) and Au(I)-bound SPU (PDB code 6I9Y) are reported for comparison.

	7P7N	7P7O	4CEU	6I9Y
	$Au(PEt_3)I(3)$	$Au(PEt_3)_2Cl(4)$	Native	Au(I)-SPU
Ni - L Distances (Å)				
Ni(1) - αLys220* Oθ1	2.0	2.0	1.9	2.0
$Ni(1) - O_B^a$	2.1	2.1	2.1	1.9
Ni(1) - O ₁	2.2	2.1	2.2	2.2
Ni(1) - αHis249 Nδ	2.0	2.1	2.0	2.1
Ni(1) - αHis275 Nε	2.1	2.0	2.0	2.2
Ni(2) - αLys220* Oθ2	2.0	2.1	2.1	2.1
$Ni(2) - O_B$	2.1	2.2	2.1	2.2
Ni(2) - O ₂	2.3	2.3	2.1	2.6
Ni(2) - αHis137 Nε	2.1	2.1	2.1	2.1
Ni(2) - αHis139 Nε	2.1	2.1	2.1	2.2
Ni(2) - αAsp363 Oδ1	2.1	2.1	2.1	2.2
Ni(1) ••• Ni(2)	3.6	3.7	3.7	3.6
$O_1 \cdots O_2$	2.1	2.0	2.4	2.2
L - Ni - L Angles (°)				
αLys220* Oθ1 - Ni(1) - αHis249 Nδ	108.3	103.7	100.4	103.2
αLys220* Oθ1 - Ni(1) - αHis275 Nε	102.5	103.2	107.2	104.0
$\alpha Lys220*O\theta 1 - Ni(1) - O_B$	93.8	96.4	96.6	91.2
$\alpha Lys220*O\theta 1 - Ni(1) - O_1$	107.0	101.6	108.2	110.8
αHis249 Nδ - Ni(1) - αHis275 Nε	97.1	98.5	98.6	91.9
αHis275 Nε - Ni(1) - O_B	95.1	96.1	94.6	93.2
O_B - Ni(1) - O_1	63.0	61.2	67.0	80.2
O_1 - Ni(1) - αHis249 Nδ	93.2	94.9	89.3	86.4
αHis249 Nδ - Ni(1) - O_B	151.9	151.6	154.2	163.1
αHis275 Nε - Ni(1) - O_1	143.8	148.1	141.6	144.7
αLys220* Oθ2 - Ni(2) - αHis137 Nε	95.1	93.5	90.8	90.9
αLys220* Oθ2 - Ni(2) - αHis139 Nε	93.4	92.3	91.7	91.2
$\alpha Lys220*O\theta 2$ - Ni(2) - O ₂	91.2	88.6	92.9	93.5
$\alpha Lys220* O\theta 2$ - Ni(2) - O _B	95.8	95.1	95.6	91.7
αAsp363 Oδ1 - Ni(2) - αHis137 Nε	84.4	83.5	82.8	83.6
αAsp363 Oδ1 - Ni(2) - αHis139 Nε	81.7	85.0	86.4	87.2
αAsp363 Oδ1 - Ni(2) - O ₂	91.6	94.8	94.5	93.1
$\alpha Asp363 O\delta1 - Ni(2) - O_B$	90.0	90.2	89.1	92.3
$O_2 - Ni(2) - O_B$	61.3	61.3	67.7	68.8
O_B - Ni(2) - αHis137 Nε	94.8	95.8	95.0	90.1
αHis137 Nε- Ni(2) - αHis139 Nε	114.4	113.4	108.5	112.8
αHis139 Nε- Ni(2) - O ₂	88.5	89.3	88.4	88.0
αLys220* Oθ2 - Ni(2) - αAsp363 Oδ1	174.3	174.5	172.4	173.1
O _B - Ni(2) - αHis139 Nε	148.5	149.3	155.3	156.8
O ₂ - Ni(2) - αHis137 Nε	155.8	157.1	162.6	158.6
$Ni(1) - O_B - Ni(2)$	119.0	117.8	122.1	125.8

Figure 1-SI. *Per* residue C α RMSD calculated between the α , β and γ subunits (coloured red, magenta and blue, respectively) of SPU co-crystallized in the presence of Au(PEt₃)I (**3**, PDB code P7PN) (upper panel) and Au(PEt₃)₂Cl (**4**, PDB code P7PO) (bottom panel) with respect to native SPU (PDB code 4CEU).

Figure 2-SI. *Per* residue C α RMSD calculated between the α , β and γ subunits (coloured black, dark grey and grey, respectively) of SPU co-crystallized in the presence of Au(PEt₃)I (**3**, PDB code 7P7N) (upper panel) and Au(PEt₃)₂Cl (**4**, PDB code 7P7O) (bottom panel) with respect to Au(I)-inhibited SPU (PDB code 6I9Y).

