Supporting Information (SI) on

High effective enrichment of U(VI) from aqueous solution on versatile crystalline carbohydrate polymers functionalized graphene oxide

Hai Wang, Renrong Liu, Huifang Wang, Baowei Hu, Muqing Qiu *

School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing

312000, P.R. China

*Corresponding Author: Muqing Qiu, Email: <u>qiumuqing@usx.edu.cn</u>

Synthesis of graphene oxide (GO)

GO was synthesized by modified Hummers method [1]. Briefly, 3.0 g graphite and 1.5 g NaNO₃ were added into 300 mL concentrated H₂SO₄ under vigorous stirring and ice-water bath conditions, then 9.0 g of KMnO₄ was slowly added into aforementioned suspension for 2 h. The suspensions were reacted at ambient conditions for 5 days under vigorous stirring conditions. Then suspensions were heated to 98 °C and 500 mL 5 wt % H₂SO₄ was added for 2 h under vigorous stirring. After the temperature was cooled to 60 °C, 12 mL H₂O₂ (30 wt %) was added in the suspensions, and the mixtures were re-reacted for 2 h at room temperature. After centrifugation at 6000 rpm for 15 min, the solid phase was washed by 5 wt % H₂SO₄ and then DI water several times until pH 4.0. Then the solid pastes were treated under ultrasonic conditions (power of 140 W) for 30 min. The centrifugation and ultrasonication were recycled for several times, and then GO solution was rinsed with Milli-Q water until the solution was neutral. The desired products were dried in a vacuum tank at room temperature.

Calculation of specific capacitance

The specific capacitance (Cs, F/g) can be calculated from the galvanostatic charging/ discharging curves using following Eqn. (S1):

$$Cs = \frac{2I\Delta t}{m\Delta U}$$
(S1)

where I and m are the discharge current (A) and the mass (g) of the active material in the one electrodes, respectively. Δ t and Δ U are the discharge time (s) and the potential window (V), respectively.

Pseudo-first-order and pseudo-second-order kinetic models

The equations of pseudo-first-order [2] and pseudo-second-order kinetic models [3]

can be described as Eqns. (S2) and (S3):

$$\ln(q_e - q_t) = \ln q_e - k_l \times t \tag{S2}$$

$$t/q_t = 1/(k_2 \times q_e^2) + t/q_e$$
 (S3)

where q_e and q_t (mg/g) are the amount of U(VI) adsorbed at equilibrium and at time t, respectively. k_1 and k_2 are the pseudo-first-order and pseudo-second-order kinetic rate constants, respectively.

Table S1 Optimized parameters of pseudo-first-order and pseudo-second-order

kinetic models of U(VI) on COF/GO

Pseudo-first-order kinetic model			Pseudo-second-order kinetic model		
ln q _e (mg/g)	$k_1(h^{-1})$	\mathbb{R}^2	qe(mg/g)	k2(g/mg/h)	\mathbb{R}^2
-0.2938	0.0812	0.3416	20	0.5556	1.0000

Distribution of U(VI) in aqueous solution

The distribution of U(VI) in aqueous solution was fitted by MINTEQ mode 2.6 [4]. The equilibrated constants and distribution of U(VI) species were summarized in Table S2 and Figure S1A, respectively.

Determination of zeta potentials

The zeta potentials of COF/GO were determined by Nano-ZS Zetasizer (Malvern Instruments Ltd., Worcestershire, UK).

Figure S1. Distribution of U(VI) species in aqueous solution (A) and zeta potentials (B) of COF/GO under different pH.

Reactions	Log K	Ref.
$UO_2^{2+} + H_2O = UO_2OH^+ + H^+$	-5.20	(83) [5]
$UO_2^{2^+} + 2H_2O = UO_2(OH)_2 + 2H^+$	-12.10	(\$3) [5]
$UO_2^{2^+} + 3H_2O = UO_2(OH)_3^- + 3H^+$	-19.20	(\$3) [5]
$UO_2^{2^+} + 4H_2O = UO_2(OH)_4^{2^-} + 4H^+$	-33.00	(S3) [5]
$3UO_2^{2+} + 5H_2O = (UO_2)_3(OH)_5^+ + 5H^+$	-15.55	(\$3) [5]
$3UO_2^{2+} + 7H_2O = (UO_2)_3(OH)_7^- + 7H^+$	-28.34	(\$3) [5]
$UO_2^{2^+} + 2CO_3^{2^-} = UO_2(CO_3)_2^{2^-}$	17.0	(S4) [6]
$UO_2^{2^+} + 3CO_3^{2^-} = UO_2(CO_3)_3^{4^-}$	21.40	(S4) [6]

Table S2. Equilibrate constants for U(VI) species in aqueous solutions

Langmuir and Freundlich equations

(S5):

The Langmuir [7] and the Freundlich [8] equation can be expressed by Eqns. (S4) and

$$\frac{C_e}{Q_e} = \frac{1}{Q_m \times K_L} + \frac{C_e}{Q_m}$$
(S4)

$$Q_e = K_f \times C^n \tag{S5}$$

where Qe (mg/g) and Ce (mg/L) are the amount of adsorbed ${}^{238}\text{U(VI)}/{}^{241}\text{Am(III)}$ on AO/CNF and the equilibrium concentration in solution, respectively; $Q_m \text{ (mg/g)}$ is the maximum adsorption capacity; $K_f \text{ (mg}^{1-n}\text{g}^{-1}\text{L}^n)$ and *n* refer to an empirical constants related to adsorption capacity.

	Langmuir			Freu		
	Ka (L [/] mg)	q_{max} $(mg'g)$	R^2	$\frac{\ln K_F}{(\mathrm{mg}^{\prime}\mathrm{g})^{\prime}(\mathrm{mg}^{\prime}\mathrm{g})^{\mathrm{n}}}$	1/n	R^2
293 K	0.8763	117.67	0.9993	3.8085	0.4644	0.9210
313 K	0.8182	138.89	0.9995	3.9880	0.4347	0.9117
333 K	0.8919	151.52	0.9994	4.0234	0.4809	0.9435

Table S3. Parameters of Langmuir and Freundlich models for U(VI) removal on

COF/GO

Calculation of thermodynamic parameters

The thermodynamic parameters (i.e., the standard Gibbs free energy change- ΔG^{0} , the standard enthalpy change- ΔH^{0} , the standard entropy change- ΔS^{0}) were calculated by Eqns. (S6) and (S7):

$$\Delta G^0 = -RT \ln K^0 \tag{S5}$$

$$\ln K^0 = \Delta S^0 / R - \Delta H^0 / (RT) \tag{S6}$$

where *R* and *T* are universal gas constant (8.314 J/(mol·K)) and Kelvin temperature (K), respectively. In K^0 is adsorption equilibrium constants, which can be calculated by plotting ln K_d vs C_e and extrapolating C_e to zero. The thermodynamic parameters were showed in Table S4.

 Temperature
 Δ G^θ(kJ/mol)
 Δ H^θ(kJ/mol)
 Δ S^θ(J/(mol·K))

 293 K
 28.63
 118.85

 313 K
 30.77
 6.26
 118.85

 333 K
 33.41
 1
 1

Table S4. Thermodynamic parameters for U(VI) removal on COF/GO

References

- [1] W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc., 80(1958)1339-1339.
- [2] S. Lagergren, Zur theorie der sogenannten adsorption geloster stoffe.Pseudo-second order model for sorption processes, Handlingar, 24(1898)1-39.
- [3] Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes, Proc. Biochem. 34(1999)451-465.
- [4] J.P. Gustafsson, A windows version of MINTEQ. <u>http://www.lwr.kth.se/English/OurSOrware/vminteq/index.htm</u>, 2009.

- [5] J.A. Davis, D.E. Meece, M. Kohler, G.P. Curtis, Approaches to surface complexation modeling of uranium(VI) adsorption on aquifer sediments, Geochim. Cosmochim. Acta, 68(2004)3621-3641.
- [6] I. Langmuir, The adsorption of gases on plane surface of glass, mica and platinum,J. Am. Chem. Soc., 40(1918)1361-1403.
- [7] D. Langmuir, Uranium solution-mineral equilibria at low-temperatures with applications to sedimentary ore-deposits, Geochim. Cosmochim Acta, 42(1978)547-569.
- [8] H.M.F. Freundlich, 1906. Uber die adsorption in lasungen. J. Phys. Chem. 57, 385-470.