Electronic Supplementary Information (ESI)

Rigid versions of PDTA⁴⁻ incorporating a

1,3-diaminocyclobutyl spacer for Mn²⁺

complexation: stability, water exchange

dynamics and relaxivity

Rocío Uzal-Varela,^a Daniela Lalli,^b Isabel Brandariz,^a Aurora Rodríguez-Rodríguez,^{*,a} Carlos Platas-Iglesias, ^a Mauro Botta,^b and David Esteban-Gómez^a

^a Universidade da Coruña, Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química Fundamental, Facultade de Ciencias, 15071, A Coruña, Galicia, Spain.

^b Magnetic Resonance Platform (PRISMA-UPO), Dipartimento di Scienze e Innovazione Tecnologica,

Università del Piemonte Orientale "A. Avogadro", Viale T. Michel 11, 15121 Alessandria, Italy.

Summary

Dissociatio	n kinetics
Figure S1. A	Absorption spectra of the [Mn(L1)] ²⁻ -Zn ²⁺ reacting system before (bold trend) and 5 min after (red trend) the mixing of the reactant ([MnL]=0.25 mM, [Zn ²⁺]=1.25 mM, [HEPES]=0.01 M, pH=7.4, I=0.874 cm, 0.15 M NaCl, 25 °C).
Figure S2.	Pseudo-first-order rate constant (k_d) characterising the transmetallation reaction between [Mn(L1)] ²⁻ and Zn ²⁺ ([MnL] _t =0.25 mM, [HEPES]=0.01 M, 0.15 M NaCl, 25 °C)
Figure S3.	Absorption spectra of the different protonated forms of the L2 ²⁻ ligand calculated from spectrophotometric titrations in aqueous solution (0.15 M NaCl, 25°).
Figure S4. /	Absorption spectrum recorded from an equimolar mixture of L2 ²⁻ and Mn ²⁺ (9.11×10 ⁻⁵ M, pH 4.75, 0.15 M NaCl, 25°C, circles), fitted spectrum (green line) and spectral contributions of the different species present in solution. 9
Figure S5. /	Absorption spectral changes observed during the formation of the [Mn(L2)] complex in aqueous solution in the pH range 3.9-6.9 (0.15 M NaCl, 25°C.).
Figure S6.	Potentiometric titrations of the L1 ⁴⁻ ligand (3.92 mM) in the absence and in the presence of one equivalent of Mn ²⁺ (0.15 M NaCl, 25°C)
Figure S7. ¹	H NMR spectrum of compound 1 (500 MHz, CDCl ₃ , 298 K) 12
Figure S8. ¹	13 C NMR spectrum of compound 1 (101 MHz, CDCl ₃ , 298 K) 12
Figure S9.	Experimental high resolution mass spectrum (ESI ⁺) of compound $1.$
Figure S10.	¹ H NMR spectrum of H ₄ L1 (500 MHz, D ₂ O, pH 1.70, 298 K) 14
Figure S11.	¹³ C NMR spectrum of H₄L1 (126 MHz, D ₂ O, pH 1.70, 298 K) 14
Figure S12.	Experimental high resolution mass spectrum (ESI ⁻) of H ₄ L1
Figure S13.	¹ H NMR spectrum of H₂L3 (500 MHz, D ₂ O, pH = 2.10, 298 K) 16
Figure S14.	¹³ C NMR spectrum of H ₂ L3 (126 MHz, D ₂ O, pH = 2.10, 298 K) 16
Figure S15.	¹ H NMR spectrum of H₂L3 (300 MHz, D ₂ O, pH = 2.10, 343 K) 17
Figure S16.	¹³ C NMR spectrum of H₂L3 (75.5 MHz, D ₂ O, pH =2.10, 343 K) 17
Figure S17.	Experimental high resolution mass spectrum (ESI ⁺) of H_2L3 18
Figure S18.	1 H NMR spectrum of compound 2 (300 MHz, CDCl ₃ , 298 K) 19
Figure S19.	¹³ C NMR spectrum of compound 2 (75.5 MHz, CDCl ₃ , 298 K) 19

S2

Figure S20. Experimental high resolution mass spectrum (ESI ⁺) of compound 2 20
Figure S21. ¹ H NMR spectrum of compound 3 (400 MHz, CDCl ₃ , 298 K) 21
Figure S22. ¹³ C NMR spectrum of compound 3 (101 MHz, CDCl ₃ , 298 K) 21
Figure S23. Experimental high resolution mass spectrum (ESI ⁺) of compound 3 22
Figure S24. ¹ H NMR spectrum of H ₂ L2 (500 MHz, D ₂ O, pH 4.33, 298 K) 23
Figure S25. ¹³ C NMR spectrum of H ₂ L2 (126 MHz, D ₂ O, pH 4.33, 298 K) 23
Figure S26. Experimental high resolution mass spectrum (ESI ⁺) of H ₂ L2 24
Table S1. Optimized Cartesian coordinates obtained for [Mn(EDTA)(H2O)]2-·5H2O(M11/Def2-TZVPP, scrf=pcm).25
Table S2. Optimized Cartesian coordinates obtained for [Mn(L1)(H2O)]25H2O(M11/Def2-TZVPP, scrf=pcm).27
Table S3. Optimized Cartesian coordinates obtained for [Mn(L2)(H2O)]·2H2O(M11/Def2-TZVPP, scrf=pcm).29
Table S4. Optimized Cartesian coordinates obtained for [Mn(L3)(H2O)]·2H2O(M11/Def2-TZVPP, scrf=pcm).31
References

Dissociation kinetics

The rates of the transmetallation reactions (Eq. (S1)) between $[Mn(L1)]^{2-}$ and Zn^{2+} were studied by spectrophotometry. Some characteristic absorption spectra of the $[Mn(L1)]^{2-} - Zn^{2+}$ system are shown in Figure S1.

$$[Mn(L1)]^{2-} + Zn^{2+} \rightleftharpoons [Zn(L1)]^{2-} + Mn^{2+}$$
(S1)

According to the spectrophotometric studies of the transmetallation reaction between $[Mn(L1)]^{2-}$ and Zn^{2+} (Figure S1), the replacement of the Mn^{2+} -ion with Zn^{2+} results in the decreases of the absorbance values at <235 nm. Based on the spectral changes, it might be assumed that the absorption band of the carboxylate groups of $[Mn(L1)]^{2-}$ is shifted to the lower wavelength range by the formation of $[Zn(L1)]^{2-}$ due to the stronger interaction between the -COO⁻ and the Zn^{2+} ion compared to the Mn^{2+} ion. Moreover, the relatively short reaction timescale of the transmetallation process obtained from the spectrophotometric studies was also confirmed by the investigation of the $[Mn(L1)]^{2-} - Zn^{2+}$ reacting system with T_1 measurements.

In the presence of excess of the exchanging ion, the transmetallation can be treated as a pseudo-first-order process and the reaction rate can be expressed with Eq. (S2), where k_d is a pseudo-first-order rate constant and [MnL]_t is the total concentration of the Mn²⁺-complex.

$$-\frac{d[\mathrm{MnL}]_{\mathrm{t}}}{d\mathrm{t}} = k_{\mathrm{d}}[\mathrm{MnL}]_{\mathrm{t}}$$
(S2)

The rates of the transmetallation reactions were studied at different concentrations of the exchanging metal ion at pH=7.4. The obtained pseudo-first order rate constants k_d are presented in Figure S2 as a function of [Zn²⁺].

At pH = 7.4 the k_d values increase with [Zn²⁺]. The dependence of k_d on the [Zn²⁺] can be expressed as a first-order function of [Zn²⁺] which indicates that the exchange can take place by Zn²⁺-independent and Zn²⁺-assisted dissociation pathways. The Zn²⁺-independent pathway can be explained by the spontaneous dissociation of [Mn(L1)]²⁻ (k_0 , Eq. (S3)), which is followed by the rapid reaction of the free ligand with the exchanging Zn²⁺ ion. The Zn²⁺ assisted reaction can be interpreted by the direct attack

of the exchanging metal ion on the $[Mn(L1)]^{2-}$ complex via the formation of dinuclear intermediate characterized by the K^*_{MnLZn} stability constant (Eq. (S4)). In the case of the $[Mn(EDTA)]^{2-}$, $[Mn(CDTA)]^{2-}$ and $[Mn(PDTA)]^{2-}$ complexes the formation of the hetero-dinuclear complexes with Cu²⁺ was also detected by spectrophotometry.¹

$$MnL \xrightarrow{k_0} Mn^{2+} + H_xL$$
 (S3)

$$K_{MnLZn}^{*}$$
MnL + Zn²⁺ \rightleftharpoons [Mn(L)Zn]

$$K_{MnLZn}^{*} = \frac{[Mn(L)Zn]}{[MnL][Zn^{2+}]}$$
(S4)

It can be assumed that in the dinuclear intermediate Mn(L)Zn, the functional groups of the $L1^{4-}$ ligand are slowly transferred from Mn²⁺ to the attacking Zn²⁺ ion (k_{MnLZn} , Eq. (S5)).

$$[Mn(L)Zn] \xrightarrow{k_{MnLZn}} Mn^{2+} + ZnL$$
 (S5)

By taking into account all the possible pathways, the rate of the transmetallation of [Mn(L1)]²⁻ with Zn²⁺ can be expressed by Eq. (S6), where [MnL] and [Mn(L)Zn] are the concentrations of the free and dinuclear complexes, respectively:

$$-\frac{d[\operatorname{MnL}]_{t}}{dt} = k_{d}[\operatorname{MnL}]_{t} = k_{0}[\operatorname{MnL}] + k_{\operatorname{MnLZn}}[\operatorname{Mn}(L)\operatorname{Zn}]$$
(S6)

Thus, the pseudo-first-order rate constant (k_d) can be expressed as in (Eq. (S7)) considering the total concentration of $[Mn(L1)]^{2-}$ ($[MnL]_t=[MnL]+[Mn(L)Zn]$), the stability constant of the dinuclear [Mn(L)Zn] intermediate (K^*_{MnLZn} , Eq. (S4)) and Eq. (S6)).

$$k_{obs} = \frac{k_0 + k_3^{Zn} [Zn^{2+}]}{1 + K_{MnLZn}^* [Zn^{2+}]}$$
(S7)

The rate constants $k_1 = k_{GdH2L} \times K_{GdHL}^H$ and $k_3 = k_{GdLCu} \times K_{GdLCu}$ characterise the spontaneous and Zn²⁺-assisted dissociation of [Mn(L1)]²⁻, respectively. The stability constant of dinuclear [Mn(L)Zn] intermediates formed with the rigid ligand are relatively small (e.g. [Mn(CDTA)Cu]: K_{MnLCu}^* =79).¹ By taking into account the very low stability constant of the [Mn(L1)Zn] intermediate (K_{MnLCu}^* =100), the denominator of Eq. (S7) can be neglected (1>> K_{MnLZn}^* [Zn²⁺]), so Eq. (S7) can be simplified in the form of Eq. (S8). The S5

 k_0 and k_3^{2n} values have been calculated by fitting of the kinetic data (Figure S2) to Eq. (S8).

$$k_{obs} = k_0 + k_3^{Zn} [Zn^{2+}]$$
(S8)

Figure S1. Absorption spectra of the $[Mn(L1)]^{2-}Zn^{2+}$ reacting system before (black trace) and 5 min after (red trace) the mixing of the reactant ([MnL]=0.25 mM, $[Zn^{2+}]=1.25 \text{ mM}$, [HEPES]=0.01 M, pH=7.4, I=0.874 cm, 0.15 M NaCl, 25 °C).

Figure S2. Pseudo-first-order rate constant (k_d) characterising the transmetallation reaction between [Mn(L1)]²⁻ and Zn²⁺ ([MnL]_t=0.25 mM, [HEPES]=0.01 M, 0.15 M NaCl, 25 °C).

Figure S3. Absorption spectra of the different protonated forms of the L2²⁻ ligand calculated from spectrophotometric titrations in aqueous solution (0.15 M NaCl, 25°).

Figure S4. Absorption spectrum recorded from an equimolar mixture of $L2^{2-}$ and Mn^{2+} (9.11×10⁻⁵ M, pH 4.75, 0.15 M NaCl, 25°C, circles), fitted spectrum (green line) and spectral contributions of the different species present in solution.

Figure S5. Absorption spectral changes observed during the formation of the [Mn(L2)] complex in aqueous solution in the pH range 3.9-6.9 (0.15 M NaCl, 25°C.).

Figure S6. Potentiometric titrations of the $L1^{4-}$ ligand (3.92 mM) in the absence and in the presence of one equivalent of Mn²⁺ (0.15 M NaCl, 25°C)

Figure S7. ¹H NMR spectrum of compound 1 (500 MHz, CDCl₃, 298 K).

Figure S8. 13 C NMR spectrum of compound 1 (101 MHz, CDCl₃, 298 K).

Figure S9. Experimental high resolution mass spectrum (ESI⁺) of compound 1.

Figure S10. ¹H NMR spectrum of **H**₄**L1** (500 MHz, D₂O, pH 1.70, 298 K).

Figure S11. ¹³C NMR spectrum of H₄L1 (126 MHz, D₂O, pH 1.70, 298 K).

Figure S12. Experimental high resolution mass spectrum (ESI⁻) of H₄L1.

Figure S14. ¹³C NMR spectrum of **H**₂**L3** (126 MHz, D₂O, pH = 2.10, 298 K).

ppm

180 170 160 150 140 130 120 110 100

S16

Figure S16. ¹³C NMR spectrum of H₂L3 (75.5 MHz, D₂O, pH =2.10, 343 K).

Figure S17. Experimental high resolution mass spectrum (ESI⁺) of H₂L3.

Figure S19. ¹³C NMR spectrum of compound 2 (75.5 MHz, CDCl₃, 298 K).

Figure S20. Experimental high resolution mass spectrum (ESI⁺) of compound 2.

Figure S22. 13 C NMR spectrum of compound 3 (101 MHz, CDCl₃, 298 K).

Figure S23. Experimental high resolution mass spectrum (ESI⁺) of compound 3.

Figure S24. ¹H NMR spectrum of **H**₂**L2** (500 MHz, D₂O, pH 4.33, 298 K).

Figure S25. ¹³C NMR spectrum of H₂L2 (126 MHz, D₂O, pH 4.33, 298 K).

Figure S26. Experimental high resolution mass spectrum (ESI⁺) of H_2L2 .

Center Number	Atomic Number	Coor X	rdinates (Ang Y	gstroms) Z
1	8	2.261552	-0.721128	1.366625
2	8	3.750417	-2.382156	1.260291
3	8	2.701827	3.027558	-1.478846
4	8	1.004032	1.892436	-0.575313
5	8	-0.271492	-2.128191	0.636871
6	8	-1.986805	-3.529899	0.378332
7	8	-1.692816	1.014165	0.145010
8	8	-2.735047	2.265054	-1.378289
9	7	-0.825286	-0.766197	-1.630219
10	7	2.059633	-0.496606	-1.281584
11	6	0.130306	-1.424389	-2.523239
12	1	0.307937	-2.429204	-2.122554
13	6	1.447073	-0.666505	-2.601325
14	1	1.272186	0.334416	-3.012327
15	6	2.714200	-1.691634	-0.769513
16	1	2.066552	-2.560406	-0.932371
17	1	3.676891	-1.891989	-1.263209
18	6	2.944708	-1.603146	0.748077
19	6	2.937936	0.667941	-1.258319
20	1	3.592876	0.605968	-0.382152
21	1	3.577375	0.724281	-2.150713
22	6	2.158356	1.984288	-1.111716
23	6	-1.823014	-1.706192	-1.137159
24	1	-2.700047	-1.155887	-0.778487
25	1	-2.171675	-2.393118	-1.922380
26	6	-1.313942	-2.531843	0.054628
27	6	-1.424692	0.445541	-2.165613
28	1	-0.658609	1.05364/	-2.65/4//
29		-2.215883	0.242340	-2.902996
30	0	-2.005078	1.314/02	-1.042/82
31	0 1	0.076029	0.976752	2.304094
32	1	-0 080157	1 926290	2.990309
34	8	-0 176083	3 518//9	1 339225
35	8	2 350885	0 298522	3 823724
36	1	0 196262	3 097478	0 539095
37	1	-1.116903	3.699795	1.151311
38	1	2.259978	-0.327676	4.545952
39	1	2.464222	-0.219287	2.991011
40	25	0.349857	-0.025432	0.356829
41	8	-3.320702	-0.446996	1.958325
42	1	-2.778018	0.074732	1.344189
43	1	-3.787519	-1.123495	1.441748
44	8	-4.544749	-2.659550	0.602988
45	8	-2.886507	3.942854	0.741727
46	1	-2.912637	3.324878	-0.029374
47	1	-3.163619	4.805744	0.424201
48	1	-5.038675	-2.637864	-0.220202
49	1	-3.690788	-3.112296	0.425163
50	1	-0.286421	-1.549908	-3.535185
51	1	2.130157	-1.180626	-3.295716

Table S1. Optimized Cartesian coordinates obtained for $[Mn(EDTA)(H_2O)]^{2-}\cdot 5H_2O$ (M11/Def2-TZVPP, scrf=pcm).

E(UM11) =-2709.8497385 Hartree

Zero-point correction=	0.387377
Thermal correction to Energy=	0.422871
Thermal correction to Enthalpy=	0.423815
Thermal correction to Gibbs Free Energy=	0.318406
Sum of electronic and zero-point Energies=	-2709.462361
Sum of electronic and thermal Energies=	-2709.426867
Sum of electronic and thermal Enthalpies=	-2709.425923
Sum of electronic and thermal Free Energies=	-2709.531333

Center Number	Atomic Number	Coor X	dinates (Ang Y	stroms) Z
1	8	2.122059	0.345133	1.722947
2	8	3.890679	-0.751677	2.525078
3	8	2.593410	2.323780	-2.459712
4	8	0.935342	1.591560	-1.161243
5	8	-0.297858	-1.577165	1.421157
6	8	-1.876074	-3.130765	1.645132
./	8	-1.812036	0.996554	-0.105930
8	8	-3.155839	1.526241	-1.804123
9	7	-0.884104	-1.217005	-1.296804
10		2.274956	-0.826038	-0.685456
	6	3.019758	-1.430459	0.41/030
12	1	2.535849	-2.369840	0.704482
13		4.056925	-1.663208	0.135921
14	6	3.032401	-0.544825	1.664222
15	6	2.989071	0.338//1	-1.222901
10 17	1	3.632624	0.755940	-0.441182
1 /		3.640544	0.057719	-2.060454
10	6	2.103420	1.513604	-1.6/1311
19	0	-1./64559	-2.018014 1 E02EE4	-0.440324
20	1	-2./24/60	-1.503554	-0.31838/
21		-1.988409	-2.992282	-0.895311
22	6	-1.201331	-2.20/09/	2 111210
23	0	-1.030020	-0.200331	-2.111219
24	1	-1.002307	-0 799602	-2.669126
25	L 6	-2.405179	-0.788092	-2.000120
20	8	-2.200421	1 865323	1 92/236
28	1	0.460532	2 119331	2 550736
20	1	-0.421566	2.632/37	1 3/8366
30	2	-0.421500	3 800475	-0 063719
31	8	2 005875	2 200397	3 629954
32	1	-0.036042	3 114201	-0 626236
32	1	-1 384151	3 837281	-0 273340
34	1	1 931069	1 852637	4 519970
35	1	2 206037	1 439399	3 035977
36	25	0.294441	0.218254	0.388705
.37	8	-3.468715	0.164837	2.054448
38	1	-2.892169	0.464267	1.334883
39	1	-3.861338	-0.677403	1.783724
40	8	-4.507395	-2.471346	1.522972
41	8	-3.207922	3.879922	-0.498695
42	1	-3.277041	3.009809	-0.958910
43	1	-3.565908	4.540457	-1.093879
44	1	-4.963196	-2.784678	0.740179
45	1	-3.615030	-2.875781	1.522152
46	6	2.049787	-1.824353	-1.737165
47	6	-0.063004	-2.081286	-2.151523
48	6	0.989701	-2.880413	-1.352627
49	6	1.094556	-1.328317	-2.841825
50	1	0.989368	-0.249540	-2.957489
51	1	1.336809	-1.774271	-3.807650
52	1	0.795747	-3.017801	-0.288472

Table S2. Optimized Cartesian coordinates obtained for $[Mn(L1)(H_2O)]^{2-.}5H_2O$ (M11/Def2-TZVPP, scrf=pcm).

53	1	1.199330	-3.845086	-1.817107
54	1	-0.709266	-2.674702	-2.814251
55	1	3.014858	-2.218085	-2.087428
 E(UM11) =-	2787.2538319) Hartree		
Zero-point	correction=	=	0.422863	
Thermal co	rrection to	Energy=	0.459836	
Thermal co	rrection to	Enthalpy=	0.460781	
Thermal co	rrection to	Gibbs Free Energy=	0.353138	
Sum of ele	ctronic and	zero-point Energies=	-2786.	830968
Sum of ele	ctronic and	thermal Energies=	-2786.	793995
Sum of ele	ctronic and	thermal Enthalpies=	-2786.	793051
Sum of ele	ctronic and	thermal Free Energies=	-2786.	900694

Center	Atomic	Coor	dinates (Ang	stroms)
Number	Number	X	Y	Z
	 o	_1 /1/500	_1 210616	
1	0	-1.414509	-1.210616	-3.604071
2	O Q	-0 168795	-0.880019	1 889221
7	0		2 1728/1	3 471279
5	7	1 788670	1 597752	0 0/50/2
5	7	-1 270948	1 451100	-1 106282
7	6	-2 436981	1 632986	-0 237180
, 8	1	-2.111095	2.114977	0.689518
9	1	-3.183229	2.288605	-0.711653
10	6	-1.641821	0.797434	-2.376195
11	1	-2.720580	0.625259	-2.428251
12	1	-1.395801	1.452849	-3.219808
13	6	-0.961524	-0.547326	-2.673578
14	6	2.016680	1.817384	1.480120
15	1	2.733613	1.071302	1.841814
16	1	2.451644	2.807143	1.670063
17	6	0.772075	1.642946	2.363836
18	6	3.018236	1.138430	-0.606731
19	1	2.867468	1.179058	-1.691063
20	1	3.858156	1.810117	-0.374787
21	8	-0.038389	-2.008104	1.481084
22	1	-0.756685	-1.843855	2.119018
23	1	-0.259123	-2.758118	0.909401
24	8	-0.257258	-3.411802	-0.909441
25	8	-1.825304	-0.795641	3.215023
26	1	-0.083392	-2.634150	-1.474640
27	1	0.212810	-4.157272	-1.286548
28	1	-1.311487	-0.029506	2.887923
29	1	-1.712656	-0.824586	4.166841
30	25	0.151648	-0.199027	0.065316
31	6	-0.652194	2.757199	-1.3///0/
32	6	1.3/5495	2.846222	-0.6183/5
33	6	0.01/429	3.4UZI68 2.504521	-0.14//58
34	0	0.746755	2.594521	-2.008229
30	1	0.943203	2 200152	-2.403201
30	1	-0.342320	3.113250	-2.717233
30	1	-0.342320	1 190080	-0 227732
30 39	1	2 208641	3 561819	-0.588208
40	1	-1 358353	3 397959	-1 923014
41	÷	-3 090091	0 320304	0 112834
42	6	-4.435658	0.277386	0.457632
43	6	-5.014162	-0.943227	0.746524
44	1	-5.014329	1.195705	0.482748
45	6	-2.905249	-1.954085	0.319129
46	6	-4.236926	-2.088485	0.659761
47	1	-6.063942	-1.004598	1.018325
48	1	-2.269147	-2.830067	0.224815
49	1	-4.653243	-3.071427	0.851163
50	6	3.389430	-0.276320	-0.244771
51	6	4.716868	-0.679686	-0.294868
52	6	5.027896	-1.998730	-0.025420

Table S3. Optimized Cartesian coordinates obtained for $[Mn(L2)(H_2O)] \cdot 2H_2O$ (M11/Def2-TZVPP, scrf=pcm).

53	1	5.488459	0.042247	-0.543637
54	6	2.710103	-2.385392	0.343420
55	6	4.002322	-2.872805	0.297406
56	1	6.058214	-2.340350	-0.060926
57	1	1.884190	-3.035754	0.607445
58	1	4.196159	-3.916297	0.519945
59	7	-2.334350	-0.773881	0.065569
60	7	2.403928	-1.113324	0.076071
E(UM11) =-2 Zero-point Thermal con Thermal con Thermal con Sum of elec Sum of elec Sum of elec	2675.654959 correction crection to crection to crection to ctronic and ctronic and ctronic and	7 Hartree = Energy= Enthalpy= Gibbs Free Energy= zero-point Energies= thermal Energies= thermal Enthalpies=	0.483341 0.516321 0.517266 0.418109 -2675.2 -2675.2 -2675.2	L71619 L38638 L37694
sum of elec	ctronic and	thermal Free Energies=	-26/5.2	236830

Center	Atomic	Cooi	rdinates (Ang	stroms)
Number	Number	Х	Y	Z
	 o		0 7/0621	6///72
1	0	-2.310244	1 642506	-0.044473
2	0	-0.236209	1 1/2015	1 176107
7	0	-0 373493	-1 253083	_1 00/083
5	8	0 131/93	-2 963931	-3 086719
5	8	2 121413	0 822568	-1 080476
7	7	1 598981	-1 559300	0 037775
, 8	7	-1.344433	-0.945287	1.247362
9	6	-2.600939	-1.287852	0.594850
10	1	-2.436905	-2.134527	-0.081131
11	1	-3.380589	-1.579498	1.315900
12	6	-3.094715	-0.139387	-0.261025
13	6	-1.538561	0.077569	2.283951
14	1	-2.380764	0.722361	2.007395
15	1	-1.781938	-0.375107	3.254653
16	6	-0.346643	1.029533	2.468349
17	6	1.757012	-2.181736	-1.284029
18	1	2.524056	-1.643839	-1.851651
19	1	2.091450	-3.224112	-1.195895
20	6	0.496658	-2.145577	-2.167187
21	6	2.814937	-0.877838	0.459110
22	1	2.701354	-0.540031	1.495012
23	1	3.701120	-1.530659	0.412861
24	6	3.038705	0.362178	-0.389702
25	8	-0.025574	2.459566	-1.206646
26	1	-0.828269	3.008401	-1.150986
27	1	0.699521	2.908742	-0.735619
28	8	1.748636	3.411708	0.760811
29	8	-2.601860	3.464308	-1.099011
30	1	1.395639	2.600129	1.187599
31	1	2.704967	3.391530	0.8460//
32	1	-3.013460	3./65/0/	-1.913395
33		-2.743635	2.503101	-1.034462
34	25	-0.024082	-2 161031	-0.469312
35	6	-0.757820	-2.101031	1 032022
30	6	-0 196991	-3 1//112	1.052920
38	6	0 684470	-1 965152	2 349676
30	1	1 002685	-0 955002	2.545070
40	⊥ 1	0 886282	-2 630835	3 191256
41	1	-0 595742	-3 081144	-0 226514
42	1	-0.268433	-4.174478	1.140177
43	1	2.018822	-3.313477	1.134736
44	1	-1.463500	-2.587395	2.563853
45	7	-4.372762	-0.141473	-0.589604
46	7	4.242290	0.917416	-0.330654
47	1	-4.965144	-0.866587	-0.213732
48	1	4.951878	0.459339	0.221449
49	6	-4.954586	0.866414	-1.461417
50	1	-5.931091	0.518468	-1.797087
51	1	-5.075230	1.816009	-0.930148
52	1	-4.307001	1.016608	-2.329340

Table S4. Optimized Cartesian coordinates obtained for $[Mn(L3)(H_2O)] \cdot 2H_2O$ (M11/Def2-TZVPP, scrf=pcm).

53 6		4.598973	2.117777	-1.068600
54 1		5.172753	1.867818	-1.966063
55 1		3.679281	2.625759	-1.362839
56 1		5.196572	2.773912	-0.432036
E(UM11) =-2597.566	3425 Hartree			
Zero-point correct	ion=		0.454371	
Thermal correction	to Energy=		0.487784	
Thermal correction	to Enthalpy=		0.488728	
Thermal correction	to Gibbs Free	e Energy=	0.388868	
Sum of electronic	and zero-point	: Energies=	-2597.1	L11972
Sum of electronic	and thermal Er	nergies=	-2597.0	78559
Sum of electronic	and thermal Er	thalpies=	-2597.0)77615
Sum of electronic	and thermal Fr	cee Energies=	-2597.1	L77474

References

1F. K. Kálmán and G. Tircsó, Inorg. Chem., 2012, **51**, 10065–10067.