Supporting information

Aqueous polyethylene oxide-based solid-state electrolyte with high voltage stability for dendrite-free lithium deposition via self-healing electrostatic shield

Wen Liu^a, Bin Qiu^a, Jiawei Yan^a, Chuanxin He^{a,b}, Peixin Zhang^{a,b}, Hongwei Mi^{a,b,*}

^a College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, PR China

^b Guangdong Flexible Wearable Energy and Tools Engineering Technology Research Centre Shenzhen University, Shenzhen, Guangdong, 518060, PR China

* Corresponding Author: milia807@szu.edu.cn (H.Mi)

Fig. S1 Preparation process for the BC-PEO-Cs⁺ electrolytes.

Fig. S2 SEM images of BC-PEO-Cs⁺ electrolyte: (a)Cross-sectional morphology, (a) corresponding elemental mappings of (b)C, (c)O, (d)N, (e)Cl, (f)Cs.

The calculation formula of Li transference number is as follows:

$$t_{Li^{+}} = \frac{I_{s}(\Delta V - I_{0}R_{1}^{0})}{I_{0}(\Delta V - I_{s}R_{1}^{s})}$$

where ΔV is the applied voltage (10 mV), I₀ and I_s are the initial current and steady current, respectively, during DC polarization process. R₁⁰ and R₁^s are the chargetransfer resistances of Li symmetric cell before and after DC polarization, respectively.

Fig. S3 Li transference number test of (a) BC-PEO-Cs⁺, (b) PEO-Cs⁺ and (c) BC-PEO

electrolyte. (All of the cells are tested at an operating temperature of 60 °C)

Fig. S4 Mechanism illustration of Li^+ deposition with or without Cs^+ on Li metal. Surface morphologies of Li metal after 1000 h at 0.2 mA cm⁻² with (a)(d) BC-PEO₅ (b)(c) BC-PEO-Cs⁺ and (e) PEO-Cs⁺ electrolyte.

Fig. S5 Cycling performance of Li | BC-PEO-Cs⁺ | NCM 811 cell at 1 C. (The cell is tested at an operating temperature of 60 °C)

Fig. S6 The initial cycling stability of Li-Li symmetrical cells assembled with ASSEs at 0.2 mA cm⁻².

Fig. S7 Charge-discharge profiles of the Li | BC-PEO-Cs⁺ | LiFePO₄ cells at various C-rate from 0.1 to 4 C. (All of the cells are tested at an operating temperature of 60 °C)

Fig. S8 Cycling performance of Li | BC-PEO-Cs⁺ | LiFePO4 cells at 0.1 C, 0.5 C, 0.8C,

2 C. (All of the cells are tested at an operating temperature of 60 °C)

Fig. S9 Charge-discharge profiles of Li | BC-PEO-Cs⁺ | LiFePO₄ cell at 1 C. (The cell is tested at an operating temperature of 60 $^{\circ}$ C).

Fig S10. Thermal properties of PEO-Cs⁺ electrolyte exposed at 150° C for 1 h.

Li-metal cells with all-solid-state electrolytes	Electrochemical performance	Reference
SiO2-areogel-reinforced CPE-based Li-metal all-solid-state cell	110 mAh·g ⁻¹ , 0.5 C, room temperature	1
LLTO-(PEO-FEC) CSSE-based LiFePO4-Li cell	115 mAh·g ⁻¹ , 0.5C, 50 ℃ 86 mAh·g ⁻¹ , 0.5 C, 35 ℃	2
Li/PEO-Cs ⁺ /LiFePO ₄ cell	120 mAh·g ⁻¹ , 0.5 C, 60 °C	3
solid-polymer-electrolyte-based LiFePO4-Li cell	134 mAh·g ⁻¹ , 0.2 C, 60 °C 101.7 mAh·g ⁻¹ , 0.5 C, 60 °C	4
Li/BC-PEO-Cs ⁺ /LiFePO4 cell	142 mAh·g ⁻¹ , 0.5 C, 60 °C 100 mAh·g ⁻¹ , 2 C, 60°C	This work

Table.S1 Electrochemical performances comparison of Li-metal cells with all-solid-state

electrolytes

Reference

1. D. Lin, P. Y. Yuen, Y. Liu, W. Liu, N. Liu, R. H. Dauskardt and Y. Cui, *Advanced Materials*, 2018, **30**, e1802661.

2. H. Li, W. Liu, X. Yang, J. Xiao, Y. Li, L. Sun, X. Ren, P. Zhang and H. Mi, *Chem. Eng. J.*, 2020, **408**, 127254.

- 3. X. Yang, Q. Sun, C. Zhao, X. Gao, K. Adair, Y. Zhao, J. Luo, X. Lin, J. Liang, H. Huang, L. Zhang,
- S. Lu, R. Li and X. Sun, Energy Storage Materials, 2019, 22, 194-199.
- 4. Z. Zhao, Y. Zhang, S. Li, S. Wang, Y. Li, H. Mi, L. Sun, X. Ren and P. Zhang, Journal of Materials

Chemistry A, 2019, 7, 25818-25823.