Insights of the Naphthalenide-driven Synthesis and Reactivity of Zerovalent Iron Nanoparticles

Andreas Reiß,^[a] Carsten Donsbach^[a], and Claus Feldmann^{[a]*}

[a] M.Sc. Andreas Reiß, Dr. C. Donsbach, Prof. Dr. C. Feldmann
 Institut f
ür Anorganische Chemie, Karlsruhe Institute of Technology (KIT)
 Engesserstrasse 15, D-76131 Karlsruhe, Germany
 claus.feldmann@kit.edu

- SUPPORTING INFORMATION -

Content

- 1. Analytical Techniques
- 2. UV-VIS spectra of [MNaph] in DME
- 3. Unit Cells of the Title Compounds 1-4
- 4. References

1. Analytical Techniques

Optical Spectroscopy (UV/VIS). Optical spectra were recorded with a Shimadzu UV-2700 spectrometer in a wavelength interval of 220-850 nm. The [LiNaph]/[NaNaph] solutions were measured in air-tight quartz cuvettes with a path-length of 1 cm against a cuvette with the pure solvent (THF, DME) as a reference.

NMR spectroscopy (NMR). NMR spectroscopy was performed on a Bruker Avance II, operating at 300 MHz. For this purpose, 0.2 mL of the [LiNaph] solution were mixed with 0.3 mL of deuterated chloroform. The resulting solution was analyzed directly after preparation.

Transmission electron microscopy (TEM). Transmission electron microscopy of the asprepared Fe(0) nanoparticles was conducted with a FEI Osiris microscope operating at an acceleration voltage of 200 kV. TEM samples were prepared by applying few drops of the nanoparticle suspension in THF on a carbon (lacey-)film suspended on copper grids (Plano). This sample holder was heated in vacuum at 120°C for 2 days to remove surface adhered solvent. Thereafter, the samples were transferred with inert conditions (argon) from a glovebox into the TEM device using a suitable transfer module (Gatan).

Dynamic light scattering (DLS). The hydrodynamic diameter of the Fe(0) nanoparticles was examined with a Malvern Zetasizer Nano-ZS (He-Ne laser with $\lambda = 633$ nm, back-scattering geometry at an angle of 173 °). For analysis, the nanoparticles were suspended in a solution of oleylamine (1 mL) in *n*-heptane (14 mL) and measured in air-tight quartz cuvettes.

Fourier-transformed infrared spectroscopy (FT-IR). FT-IR spectroscopy was conducted on a Bruker Vertex 70 FT-IR spectrometer, equipped with a Platinum A 225 ATR unit (Bruker). The spectra of polymerized THF and Fe(0) nanoparticles were analyzed using the OPUS software.

Elemental analysis (EA). Elemental analysis (C/H/N/S analysis) of the Fe(0) nanoparticles was performed using an Elementar Vario Microcube operating at a temperature of 1150 °C in an atmosphere of pure oxygen.

X-ray powder diffraction (XRD). XRD was performed using a Stoe Stadi MP, equipped with a Cu-K_{α} radiation source and a Ge-(111)-monochromator. The as-prepared Fe(0)

nanoparticles were mortared with an equal amount of powdered glass (9-13 μ m, Sigma-Aldrich) to reduce the X-ray absorption of the Fe(0) nanoparticles. The resulting powder mixture was then transferred into a glass capillary (0.4 mm in diameter, Hilgenberg) for measurement.

Single-crystal X-ray diffraction and structure analysis. Single-crystal X-ray diffraction analysis was performed using an IPDS II diffractometer (Stoe) using Mo-K_a ($\lambda = 7.1073$ Å, graphite monochromator). Suitable single crystals were manually selected under inert oil (perfluoropolyalkylether, ABCR). Data reduction and numerical absorption correction were performed using the STOE X-AREA software package.^{S1} Determination of the space group based on systematically absent reflections, structure solution via direct methods, and structure refinement were carried out using the ShelXT, ShelXL, and Olex2 software packages.^{S2} The structures were refined via least-squares minimization with anisotropic displacement parameters for all non-hydrogen atoms. The resulting structures were graphically presented with the DIAMOND program.^{S3}

2. UV-VIS spectra of [MNaph] in DME

UV-VIS spectra of the low stability of [LiNaph] and [NaNaph] solutions in DME (Figure S1). Thus, the specific absorption of [LiNaph]/[NaNaph] at 400-430 nm is only visible at highest concentration (0.400 mM), since the discoloration is too fast at lower concentration.

Figure S1. UV-VIS spectra of [LiNaph] and [NaNaph] in DME.

3. Unit Cells of the Title Compounds 1-4

The unit cells of $[FeI_2(MeOH)_2]$ (1), $[MePPh_3][FeI_3(Ph_3P)]_4 \cdot PPh_3 \cdot 6C_7H_8$ (2), $[FeI_2(PPh_3)_2]$ (3), and $[FeI_2(18\text{-crown-6})]$ (4) are displayed in Figures S2,S4-S6. Moreover, the presence of MeOH as a ligand in 1 was confirmed by FT-IR (Figure S3).

Figure S2. Unit cell of $[FeI_2(MeOH)_2]$ (1).

Figure S3. FT-IR spectrum of $[FeI_2(MeOH)_2]$ (1) with methanol and inert oil (in which the crystals were embedded) as references.

Figure S4. Unit cell of $[MePPh_3][FeI_3(Ph_3P)]_4 \cdot PPh_3 \cdot 6C_7H_8$ (2).

Figure S5. Unit cell of [FeI₂(PPh₃)₂] (3).

Figure S6. Unit cell of $[FeI_2(18\text{-crown-6})]$ (4).

4. References

- S1 X-RED32, Data Reduction Program, Version 1.01, Stoe, Darmstadt 2001.
- S2 G. M. Sheldrick, SHELXT Integrated space-group and crystal-structure determination. *Acta Crystallogr. A*, 2015, **71**, 3–8.
- S3 DIAMOND Version 4.6.3. Crystal and Molecular Structure Visualization. Crystal Impact GbR, Bonn 2020.