Molecular stabilization of chemically exfoliated bare MnPS_3 layers

Isaac Brotons-Alcázar, a Ramón Torres-Cavanillas a Marc Morant-Ginera, Martin Cvikla, Samuel Mañas-Valeroa, Alicia Forment-Aliaga*a and Eugenio Coronado.*a

Table of contents

Raman Spectra	2
ATR-IR Spectra	3
XPS Analysis	4
Z Potential	6
TGA Analysis	7
PXRD Patterns	8
AFM	9
MnPS ₃ @PVP Proposed Scheme	12
Eletrochemistry Data	13

Raman Spectra

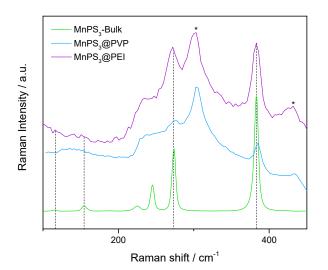


Fig. S1.- Raman spectra of bulk MnPS₃, MnPS₃@PVP and MnPS₃@PEI. Substrate-related peaks are marked as *.

Raman spectra were collected by spin-coating suspensions of different $MnPS_3$ -based systems onto Si/SiO₂ substrates. 532 nm laser was employed for performing the measurements.

Vibration mode	MnPS₃ Bulk	MnPS₃@PVP	MnPS₃@PEI
Bg	115	-	116
Ag	154	-	151
A _g , B _g	224	- 238	235
Ag	245		
A _g , B _g	274	275	275
Si-O	-	304	303
Ag	383	385	383
Si	-	433	432

Table S1.- Raman active modes for $MnPS_3$, $MnPS_3@PVP$ and $MnPS_3@PEI$.

ATR-IR Spectra

In **Fig. S2** the main bands of PVP are highlighted pointing out the good agreement of bare PVP bands and those in $MnPS_3@PVP$ system. The carbonyl band is shifted to lower energies in the $MnPS_3@PVP$ system.

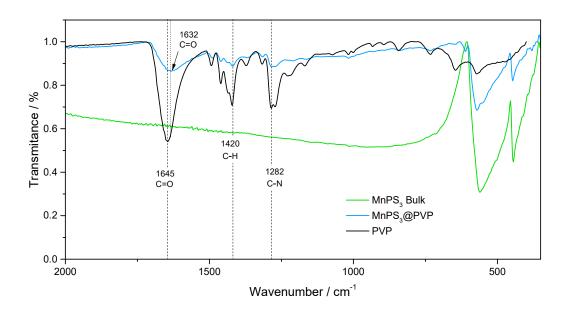


Fig. S2.- Infrared spectra of bulk MnPS₃; MnPS₃@PVP and commercial PVP

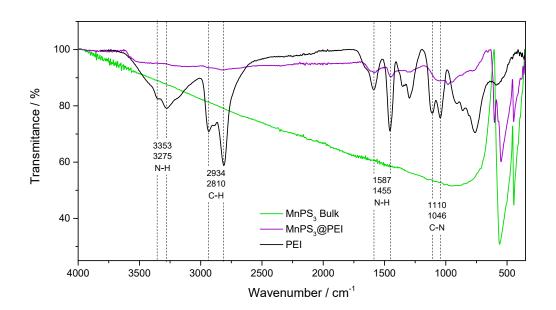


Fig. S3.-Infrared spectra of bulk MnPS₃; MnPS₃@PEI and commercial PEI

XPS Analysis

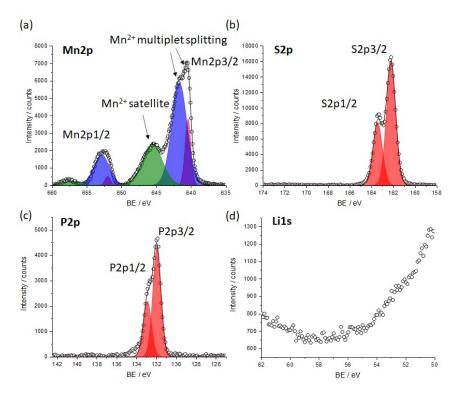


Fig. S4.- a) Mn 2p, b) S2p, c) P2p, and d) Li1s XPS regions of MnPS₃@H₂O. Representation of the main peaks (red) (and blue, for Mn splitting) and satellite peaks (green).

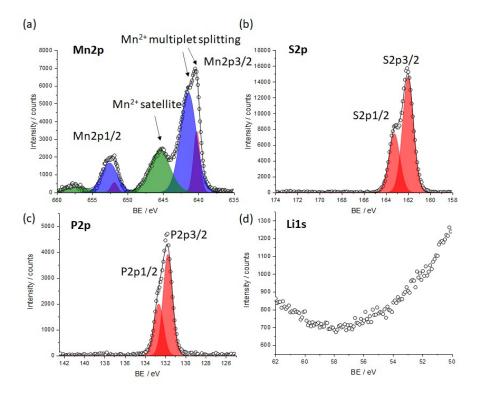


Fig. S5.-a) Mn 2p, b) S2p, c) P2p, and d) Li1s XPS regions of MnPS₃@PVP. Representation of the main peaks (red) (and blue, for Mn splitting) and satellite peaks (green).

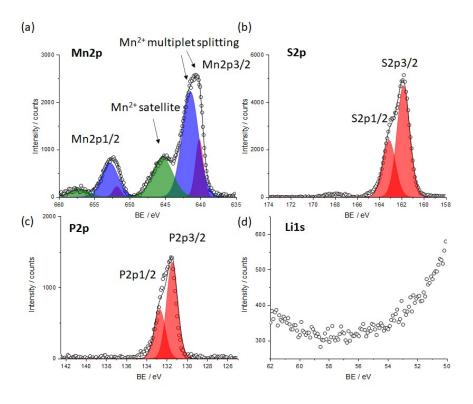


Fig. S6.- a) Mn 2p, b) S2p, c) P2p, and d) Li1s XPS regions of MnPS₃@PEI. Representation of the main peaks (red) (and blue, for Mn splitting) and satellite peaks (green).

The electronic signature of the exfoliated material exhibits a complex Mn2p region due to significant multiplet splitting and satellite peaks, Fig S4-S6 (a).^{1,2} For all the samples, two sets of bands around 641 eV and 652 eV can be observed, corresponding to the $Mn2p_{3/2}$ and $Mn2p_{1/2}$ levels of Mn^{2+} . For simplicity, each set of bands has been deconvoluted in two main peaks and a satellite.

Also, the presence of S and P is evidenced for the different samples by the appearance of the characteristic S2p and P2p doublets (Fig S4-S6 b and c), while no residual Li⁺ from the exfoliation protocol is recorded (Fig S4-S6 d).

Remarkably, the ratio Mn:P:S of the three samples can be quantified from the XPS, estimating values close to the expected 1:1:3 (Table S2), indicating negligible amount of Mn vacancies.

Sample	Ratio Mn:P:S
MnPS ₃ @H ₂ O	0.9:1.0:2.8
MnPS₃@PVP	1.0:1.0:2.9
MnPS₃@PEI	1.0:1.0:2.9

Table S2.- Mn:P:S atomic ratio for MnPS₃@H₂O, MnPS₃@PVP and MnPS₃@PEI

Z Potential

The MnPS₃@H₂O presents a negative surface charge after washing alkaline cations out. In the case of MnPS₃@PVP, partial reduction of Z potential occurs due to the presence of the capping agent. For MnPS₃@PEI, the presence of positively charged amino groups leads to positive surface charge in the system.

Table S3.- Zeta Potential values for MnPS₃@H₂O, MnPS₃@PVP and MnPS₃@PEI

	Sample	Z Potential / mV
-	MnPS ₃ @H ₂ O	-43.8 ± 0.4
	MnPS₃@PVP	-25.5 ± 0.7
_	MnPS₃@PEI	+13.8 ± 0.6

TGA Analysis

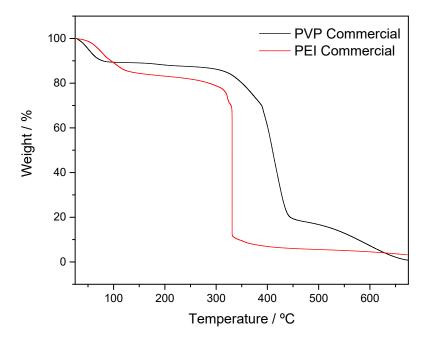


Fig. S7.- TGA analysis under N_2 atmosphere of PVP (Black) and PEI (Red)

PXRD Patterns

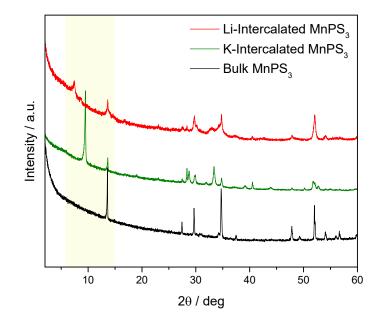


Fig. S8.- XRPD of bulk $MnPS_3$ (Black), K-intercalated $MnPS_3$ (Green) and Li-intercalated $MnPS_3$ (Red). Highlighted area corresponds to the (001) peak displacement.

AFM

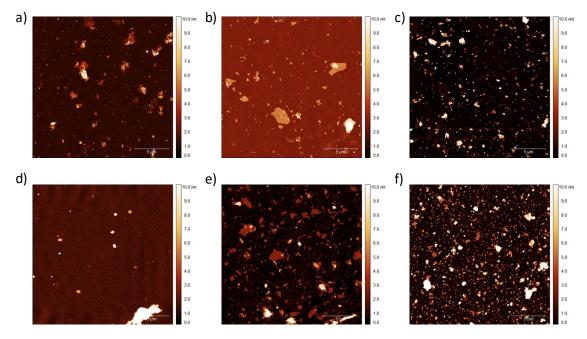


Fig. S9.- Full 20x20 μ m² AFM topography images of MnPS₃@H₂O (a), MnPS₃@PVP (b) and MnPS₃@PEI (c) spin-coated on Si/SiO₂ substrates right after suspensions were prepared (day 1). Bottom: AFM topography images of MnPS₃@H₂O (a), MnPS₃@PVP (b) and MnPS₃@PEI (c) spin-coated on Si/SiO₂ substrates five days after suspensions used in top images, were prepared (day 5). These images correspond to bigger scope of Fig 4 (a)-(f).

Additional images of AFM have been measured for having an idea of the homogeneity of the samples

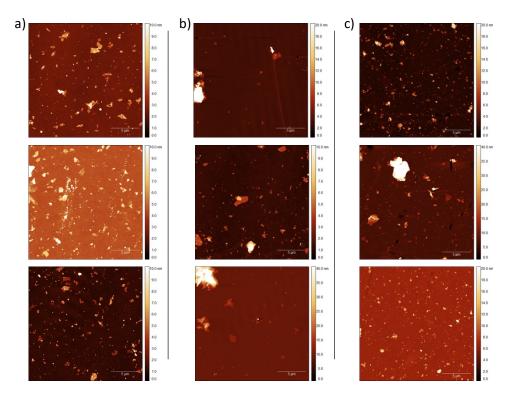


Figure S10.- Additional AFM topography images measured in different spots for a first-day samples of: $MnPS_3@H_2O$ (column $MnPS_3@PVP$ (column b) and $MnPS_3@PEI$ (column c).

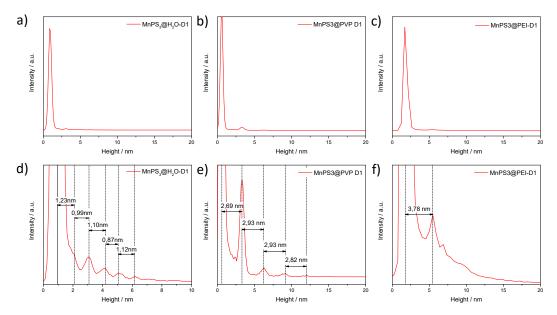
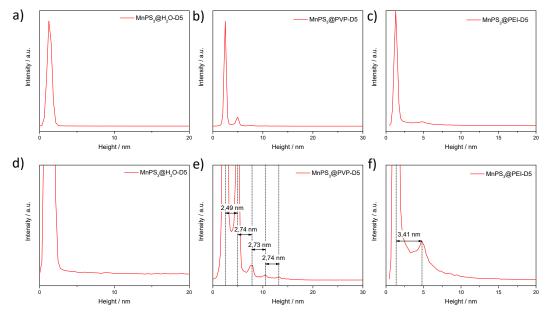



Fig. S11.- Height histograms of first-day samples of a)MnPS₃@H₂O, b)MnPS₃@PVP and c)MnPS₃@PEI; d), e) and f) are onsets of a), b) and c), respectively. Histograms (a), (b) and (c) correspond to the pictures presented in Fig S9 (a), (b)

and (c).

Fig. S12.- Height histograms of fifth-day samples of a)MnPS₃@H₂O, b)MnPS₃@PVP and c)MnPS₃@PEI; d), e) and f) are onsets of a), b) and c), respectively. Histograms (a), (b) and (c) correspond to the pictures presented in Fig S9 (d), (e) and (f)

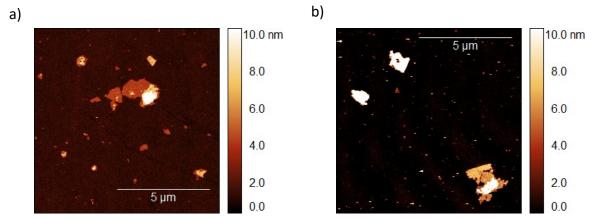
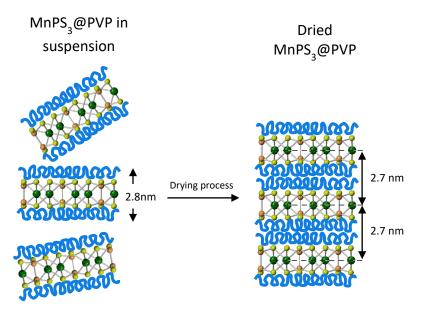



Figure S13.- AFM images taken 35 days after exfoliation of MnPS₃@PVP (a) and MnPS₃@PEI (b)

MnPS3@PVP Proposed Scheme

Scheme S1.- Proposed arrangement for $MnPS_3@PVP$ layers in suspension and in dried form. Layer thickness determined by AFM (a) and layered structure deduced by XRD (b).

Electrochemistry data

Regarding the efficiency of $MnPS_3$ and other family materials towards HER catalysis it is possible to find several works in literature and the values for overpotential are depicted in Table S4.

Material	η@10mA·cm⁻² / mV v RHE	Ref
MnPS ₃ @H ₂ O	525	This work
MnPS₃@PVP	738	This work
MnPS₃@PEI	532	This work
exf-MnPS₃	835	1
exf-MnPSe₃	640	1
Few-Layer-FePS ₃	211	2
Few-Layer NiPS ₃	297	3

Table S4 HER performance achieved for different MPX3 in the present and previous works

All the MnPS₃ systems were measured using an electrochemical cell with graphite rod as counter electrode, Ag/AgCl as reference electrode and glassy carbon covered with the target MnPS₃ system as working electrode. With this system the values of current density are much lower than the platinum-based system, however, for the sake of comparison, it is worth noting how the tendency of catalytic performance is the same in both systems (Fig. S14).

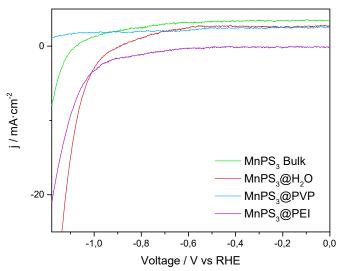


Fig. S14.- LSV measurements for bulk MnPS₃, MnPS₃@H₂O, MnPS₃@PVP and MnPS₃@PEI deposited onto glassy carbon working electrode.

Table S5.- Overpotential values for current densities of 10 and 20 mA \cdot cm⁻² for bulk MnPS₃, MnPS₃@H₂O, MnPS₃@PVP and MnPS₃@PEI measured with platinum wire or graphite rod as counter electrode

	Pt as counter electrode		Graphite Rod as counter electrode	
	η@10mA⋅cm⁻²	η@20mA⋅cm⁻²	η@10mA⋅cm⁻²	η@20mA⋅cm⁻²
	/mV	/mV	/mV	/mV
MnPS₃ Bulk	-829	-981	-	-
MnPS₃@H₂O	-525	-565	-1070	-1120
MnPS₃@PVP	-738	-782	-	-
MnPS₃@PEI	-532	-601	-1110	-1170