Tetranuclear Cr-Ln ferrocenecarboxylate complexes with a defectdicubane structure: synthesis, magnetism, and thermolysis

Pavel S. Koroteev,^a* Zhanna V. Dobrokhotova,^a Andrey B. Ilyukhin,^a Ekaterina V. Belova,^{a,b} Alexey D. Yapryntsev,^a Mathieu Rouzières,^c Rodolphe Clérac,^c* Nikolay N. Efimov.^a

 ^a N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky prosp. 31, 119991 Moscow, GSP-1, Russian Federation
 ^b Lomonosov Moscow State University, Department of Chemistry, GSP-1, Leninskie Gory 1/3, 119991 Moscow, Russian Federation
 ^c Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031, 33600 Pessac, France

Correspondence: pskoroteev@list.ru, clerac@crpp-bordeaux.cnrs.fr

SUPPLEMENTARY MATERIALS

Table S1. Crystal data and structure refinement for 1 – 5 and 1a.

Identification code	1	2	3	4	5
Empirical formula	$C_{78}H_{96}Cr_2Fe_4N_4O_{24}Tb_2$	$C_{78}H_{96}Cr_2Dy_2Fe_4N_4O_{24}$	$C_{78}H_{96}Cr_{2}Fe_{4}Ho_{2}N_{4}O_{24}$	C ₇₈ H ₉₆ Cr ₂ Er ₂ Fe ₄ N ₄ O ₂₄	$C_{78}H_{96}Cr_2Fe_4N_4O_{24}Y_2$
Formula weight	2118.82	2125.98	2130.84	2135.50	1978.80
Temperature, K	150(2)	150(2)	150(2)	150(2)	150(2)
Wavelength, Å	0.71073	0.71073	0.71073	0.71073	0.71073
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space group	$P2_1/n$	$P2_1/n$	$P2_1/n$	$P2_1/n$	$P2_1/n$
<i>a</i> , Å	15.0231(4)	15.2812(4)	15.2579(5)	14.9585(4)	15.0033(5)
b, Å	17.2324(5)	16.7770(5)	16.7324(5)	17.2006(5)	17.1273(5)
<i>c</i> , Å	15.6619(4)	15.8983(5)	15.9113(5)	15.6650(5)	15.6663(5)
β , °	99.7370(10)	103.1360(10)	103.0660(10)	99.7280(10)	100.1480(10)
Volume, Å ³	3996.21(19)	3969.2(2)	3957.0(2)	3972.6(2)	3962.7(2)
Ζ	2	2	2	2	2
D (calc), Mg/m ³	1.761	1.779	1.788	1.785	1.658
μ , mm ⁻¹	2.789	2.909	3.029	3.138	2.500
<i>F</i> (000)	2132	2136	2140	2144	2028
Crystal size, mm	0.3 imes 0.3 imes 0.2	0.4 imes 0.3 imes 0.28	$0.24 \times 0.24 \times 0.16$	0.2 imes 0.2 imes 0.2	$0.32 \times 0.3 \times 0.12$
θ range, °	2.101, 29.603	2.064, 30.544	2.067, 28.715	2.106, 30.046	2.102, 29.180
Index ranges	$-20 \le h \le 20$	$-21 \le h \le 21$	$-19 \le h \le 20$	$-21 \le h \le 20$	$-19 \le h \le 20$
	$-23 \le k \le 23$	$-23 \le k \le 23$	$-22 \le k \le 22$	$-24 \le k \le 23$	$-22 \le k \le 22$
	$-21 \le 1 \le 21$	$-22 \le 1 \le 22$	$-21 \le l \le 21$	$-21 \le 1 \le 22$	$-21 \le 1 \le 20$
Reflections collected	53330	55260	50647	54182	50517
Independent reflections, $R_{\rm int}$	11218, 0.0515	12036, 0.0376	10141, 0.0469	11600, 0.0487	10360, 0.0525
Completeness to $\theta = 25.242^{\circ}$	99.9 %	100.0 %	100.0 %	99.9 %	99.9 %
Absorption correction	Semi-empirical	Semi-empirical	Semi-empirical	Semi-empirical	Semi-empirical
	from equivalents	from equivalents	from equivalents	from equivalents	from equivalents
Max., min. transmission	0.7459, 0.6117	0.7461, 0.5241	0.7458, 0.5678	0.746, 0.607	0.7458, 0.556
Refinement method	Full-matrix	Full-matrix	Full-matrix	Full-matrix	Full-matrix
	least-squares on F^2	least-squares on F^2	least-squares on F^2	least-squares on F^2	least-squares on F^2
Data / restraints / parameters	11218 / 0 / 595	12036 / 15 / 595	10141 / 15 / 594	11600 / 0 / 595	10360 / 0 / 595
Goodness-of-fit	0.974	0.999	0.974	0.923	1.068
$R_1, wR_2 [I > 2\sigma(I)]$	0.0335, 0.0788	0.0316, 0.0814	0.0302, 0.0709	0.0309, 0.0722	0.0381, 0.0824
R_1 , wR_2 (all data)	0.0563, 0.0932	0.0444, 0.0928	0.0443, 0.0785	0.0518, 0.0842	0.0800, 0.0971
Largest diff. peak and hole, e.Å ⁻³	1.273, -0.618	1.624, -1.059	1.039, -0.687	1.302, -0.690	0.598, -0.513

Identification code	1a
Empirical formula	$C_{78}H_{96}Cr_{2}Fe_{4}N_{4}O_{24}Tb_{2}$
Formula weight	2118.82
Temperature, K	150(2)
Wavelength, Å	0.71073
Crystal system	Triclinic
Space group	P-1
a, Å	10.0901(18)
<i>b</i> , Å	12.780(3)
<i>c</i> , Å	16.698(3)
α , °	105.437(6)
β , °	96.248(6)
γ,°	95.977(6)
Volume, Å ³	2043.2(7)
Ζ	1
D (calc), Mg/m ³	1.722
μ , mm ⁻¹	2.728
F(000)	1066
Crystal size, mm	$0.08 \times 0.08 \times 0.02$
θ range, °	2.371, 25.349
Index ranges	$-12 \le h \le 12$
-	$-15 \le k \le 15$
	$-20 \le l \le 20$
Reflections collected	26431
Independent reflections, R_{int}	7475, 0.1715
Completeness to $\theta = 25.242^{\circ}$	99.9 %
Absorption correction	Semi-empirical
	from equivalents
Max,. min. transmission	0.0439, 0.0223
Refinement method	Full-matrix
	least-squares on F ²
Data / restraints / parameters	7475 / 0 / 478
Goodness-of-fit	0.946
$R_1, wR_2 [I > 2\sigma(I)]$	0.0691, 0.1290
R_1 , wR_2 (all data)	0.1693, 0.1655
Largest diff. peak and hole, e.Å ⁻³	1.601, -1.928

Fig. S1. Ionic currents in the mass spectrum of the gases evolved during thermolysis of Ho complex 3 under argon.

Fig. S2. Powder X-ray diffraction patterns of solid oxidative thermolysis products from complexes 1 (green line), 2 (black line), 3 (blue line), 4 (red line), and 5 (magenta line). Vertical sticks represent the X-ray diffraction patterns of DyCrO₃ (red sticks), and $Cr_{0.75}Fe_{1.25}O_3$ (brown sticks; taken from COD/PDF database, numbers COD 1008154 and PDF 01-077-9861, respectively).

	G	F	701
Spectrum	Cr	Fe	Tb
Spectrum 1	22.35	55.73	21.93
Spectrum 2	21.35	55.99	22.65
8 ()	21.20	55.02	22.01
Spectrum 3	21.26	55.93	22.81
Spectrum 1	21.23	55.00	22.87
Spectrum 4	21.23	55.90	22.07
Spectrum 5	21.34	56.02	22.64
•			
Spectrum 6	21.28	55.84	22.88
M	21.47	55.00	22 (2
Mean	21.4/	55.90	22.63

Table S2b.

Spectrum	Cr	Fe	Dy
			2
Spectrum 1	25.02	51.18	23.80
Spectrum 2	26.17	47.93	25.90
spectrum 2	20117	.,.,,,	20.00
Spectrum 3	25.16	50.59	24.25
Spectrum 4	25.02	50.84	24.14
Spectrum 5	23.06	53.44	23.50
Mean	24.75	50.98	24.27

Fig. S3a (see caption below).

Fig. S3b.

Table S2a (see caption below).

Table S2c.

Spectrum	Cr	Fe	Ho
-			
Spectrum 1	25.01	49.87	25.13
Spectrum 2	24.72	49.97	25.31
Spectrum 3	24.88	50.05	25.07
Spectrum 4	24.76	50.09	25.15
Spectrum 5	24.95	49.79	25.26
Mean	24.86	49.95	25.18

Table S2d.

Spectrum	Cr	Fe	Er
Spectrum 1	24.58	51.05	24.37
-F			
Spectrum 2	24.53	50.50	24.97
Spectrum 3	24.29	50.74	24.97
Spectrum 4	25.44	48.02	26.54
Spectrum 5	24.64	50.81	24.55
Mean	24.70	50.21	25.09

Spectrum 3 Spectrum 4 Spectrum 4

Fig. 3c.

Fig. 3d.

Fig. 3e.

Tables 2a-e; Figs. S3a-e. Energy dispersive X-ray microanalyses data (Tables, at.%) and corresponding SEM images for oxidative thermolysis products of complexes 1-5.

Table S2e.

Spectrum	Cr	Fe	Y
1			
Spectrum 1	25.30	48.00	26.70
1			
Spectrum 2	25.95	50.06	23.99
Spectrum 3	26.35	50.00	23.65
Spectrum 4	26.12	49.91	23.97
spectrum :	20112	.,,,,,	20107
Spectrum 5	25.97	49.93	24.11
Spectrum 6	25.99	50.01	24.01
Mean	25.95	49.65	24 40
Witcuit	25.75	19.05	21.10

Fig. S4. ac frequency (left) and temperature (right) dependences of the real (χ' , top) and imaginary (χ'' , bottom) parts of the ac susceptibility for **1** in zero-dc field and for ac frequencies between 10 and 10000 Hz and between 1.9 and 12 K.

Fig. S5. ac frequency (left) and temperature (right) dependences of the real (χ' , top) and imaginary (χ'' , bottom) parts of the ac susceptibility for **2** in zero-dc field and for ac frequencies between 10 and 10000 Hz and between 1.8 and 15 K.

Fig. S6. ac frequency dependence of the real (χ' , top) and imaginary (χ'' , bottom) parts of the ac susceptibility for **3** in zero-dc field and for ac frequencies between 10 and 10000 Hz and between 2 and 8 K.

Fig. S7. ac frequency dependence of the real (χ' , top) and imaginary (χ'' , bottom) parts of the ac susceptibility for **1** at 5.5 K under different dc fields between 0 and 1 T and for ac frequencies between 10 and 10000 Hz.

Fig. S8. ac frequency dependence of the real (χ' , top) and imaginary (χ'' , bottom) parts of the ac susceptibility for **2** at 7 K under different dc fields between 0 and 1 T and for ac frequencies between 10 and 10000 Hz.

Fig. S9. ac frequency dependence of the real (χ' , top) and imaginary (χ'' , bottom) parts of the ac susceptibility for **3** at 4 K under different dc fields between 0 and 0.5 T and for ac frequencies between 10 and 10000 Hz.

Fig. S10. ac frequency dependence of the real (χ' , top) and imaginary (χ'' , bottom) parts of the ac susceptibility for 4 at 2 K under different dc fields between 0 and 0.15 T and for ac frequencies between 10 and 10000 Hz.