Electronic Supplementary Material (ESI) for Dalton Transactions.

Electronic Supplementary information

$\mathbf{P h I C l}_{2}$ is activated by chloride ions

Tania, ${ }^{\text {a }}$ Tiffany B. Poynder, ${ }^{\text {a }}$ Aishvaryadeep Kaur, ${ }^{\text {a }}$ Lachlan Barwise, ${ }^{\text {a }}$ Sevan D. Houston, ${ }^{a}$ Akshay J. Nair, ${ }^{\text {b }}$ JackK. Clegg, ${ }^{\text {b }}$ David J. D. Wilson ${ }^{\text {a }}$ and Jason L. Dutton ${ }^{\text {a* }}$${ }^{\text {a Department of Chemistry and Physics, La Trobe University, Melbourne, Victoria, Australia }}$${ }^{\mathrm{b}}$ School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland,Australia, 4072
Table of Contents

1. EXPERIMENTAL SECTION1
I. Experimental Details1
II. Reaction Procedures 2
i. Syntheses 2
ii. Conversion of Anisole to p-Chloroanisole 3
iii. Decomposition of PhICl_{2} with time 4
iv. BindFit NMR titrations procedure 5
v. Electrochemical procedure 6
III. NMR Investigations 7
i. Conversion of anisole to p-chloroanisole7
ii. Decomposition of PhICl_{2} 24
iii. BindFit experiment 28
IV. Electrochemical Analysis 30
V. X-ray Crystallographic Details 30
2. COMPUTATIONAL SECTION 31
3. REFERENCES 32

1. EXPERIMENTAL SECTION

I. Experimental Details

All reagents were purchased from Sigma Aldrich and used as received. CDCl_{3} was stirred over CaH_{2} for 24 hours, distilled and stored over 3 angstrom molecular sieves in the glovebox, although used as received had no effect on conversions. The BindFit experiments were prepared in an N_{2} filled glove box. The reagents and solvents used for these experiments were air and water free. NMR spectra for all experiments were recorded using Bruker Ultrashield Plus 500 MHz and Ascend 400 MHz
spectrometers. The abbreviations used to report NMR signal multiplicity are $\mathrm{s}=\operatorname{singlet}, \mathrm{d}=\operatorname{doublet}, \mathrm{t}$ $=$ triplet, $\mathrm{m}=$ multiplet.

II. Reaction Procedures

i. Syntheses
a. Iodobenzene dichloride ${ }^{1}$

In a conical flask, $\mathrm{PhI}(0.5 \mathrm{~mL}, 5 \mathrm{mmol})$ was cooled to $0^{\circ} \mathrm{C}$ on ice bath. $\mathrm{HCl}(10 \mathrm{~mL}$, $10 \mathrm{M})$ was added dropwise while stirring followed by $3-4$ drops of $\mathrm{H}_{2} \mathrm{O}_{2}(30 \%)$. Gradually, a yellow solid sticking to the walls of flask was observed. After two hours, solid was collected by filtration and washed free of chloride with water. The air-dried solid was then dissolved in minimal $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and dried over anhydrous MgSO_{4}. The filtered solution was stored at -20 ${ }^{\circ} \mathrm{C}$ resulting in overnight formation of crystals. The yellow needle like crystals were collected and identified as title compound $(1.10 \mathrm{~g}, 89 \%)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.19-8.18(2 \mathrm{H}, \mathrm{d}), 7.62-7.58(1 \mathrm{H}, \mathrm{t}), 7.48-7.46(2 \mathrm{H}, \mathrm{t})$.
b. 3-Chloro-4-dimethylaminopyridine ${ }^{1}$

Iodobenzene dichloride ($200 \mathrm{mg}, 0.728 \mathrm{mmol}$) was dissolved in $\mathrm{CHCl}_{3}(6 \mathrm{~mL})$ in a reaction flask. 4-Dimethylaminopyridine ($178 \mathrm{mg}, 1.46 \mathrm{mmol}$) dissolved in $\mathrm{CHCl}_{3}(0.5$ mL) was added to the flask. The mixture was stirred for 15 minutes. Subsequently, hexane was added to reaction mixture and a white solid precipitated. The precipitate was removed via centrifugation and identified as 4 -dimethylaminopyridine. HCl by ${ }^{1} \mathrm{H}$ NMR via comparison with a genuine sample. The supernatant was collected, and volatiles were removed in vacuo to give a colourless liquid. The liquid was dissolved in $\mathrm{CHCl}_{3}(1 \mathrm{~mL})$, and triflic acid $(64 \mu \mathrm{~L}, 0.728 \mathrm{mmol})$ was added dropwise as a CHCl_{3} solution, with stirring. Diethyl ether $(5 \mathrm{~mL})$ was added to yield a white precipitate which was collected via centrifugation $(\mathrm{m} / \mathrm{z}=157.13)$. The solid was dissolved in $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ and basified with 1 M NaOH (approx. 1 mL) until pH 14. The aqueous solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 x 5 mL). The organic layers were combined and washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$ and subsequently dried over MgSO_{4} and filtered. Volatiles were removed in vacuo to give the title compound as a colourless liquid (70 mg , 61\%).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.32(1 \mathrm{H}, \mathrm{s}), 8.22-8.20(1 \mathrm{H}, \mathrm{d}), 6.75-6.74(\mathrm{IH}, \mathrm{d}), 2.99(6 \mathrm{H}, \mathrm{s})$. ${ }^{13} \mathrm{C}$ NMR (400 MHz, CDCl3): $\delta 155.50,150.24,147.68,121.66,112.82,42.32$.
c. Pyridine hydrochloride salts

A reaction flask was charged with the respective pyridine (2 mmol) and dissolved in $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL}) .2 \mathrm{M}$ $\mathrm{HCl} . \mathrm{Et}_{2} \mathrm{O}$ ($1.1 \mathrm{eq} ., 2.20 \mathrm{mmol}$) was added dropwise while continuously stirring. White precipitates were formed immediately. The solid was isolated via centrifugation, washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 2 \mathrm{~mL})$ and dried under vacuum to give an HCl salt of the respective pyridine.

Pyridine. $\mathrm{HCl}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.88-8.87(2 \mathrm{H}, \mathrm{d}), 8.49-8.45(1 \mathrm{H}, \mathrm{t}), 7.48-7.46(2 \mathrm{H}, \mathrm{t})$.
4-DMAP.HCl ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.12-8.08(2 \mathrm{H}, \mathrm{t}), 6.77-6.75(2 \mathrm{H}, \mathrm{d}), 3.23(6 \mathrm{H}, \mathrm{s})$.
3-Cl-4-DMAP.HCl ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.25(1 \mathrm{H}, \mathrm{s}), 8.14-8.12(1 \mathrm{H}, \mathrm{d}), 6.88-6.87(1 \mathrm{H}, \mathrm{d})$, $3.37(6 \mathrm{H}, \mathrm{s})$.
d. Pyridine hydrotriflate salt

A reaction flask was charged with respective pyridine (2 mmol) and dissolved in $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$. Triflic acid (1.1 eq., 2.20 mmol) dissolved in $\mathrm{Et}_{2} \mathrm{O}$ was added dropwise while continuously stirring. White precipitates were formed immediately. The solid was isolated via centrifugation, washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 2 \mathrm{~mL})$ and dried under vacuum to give an HOTf salt of the respective pyridine.

Pyridine.HOTf ${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.94-8.93(2 \mathrm{H}, \mathrm{d}), 8.53-8.51(1 \mathrm{H}, \mathrm{t}), 8.06-8.02(2 \mathrm{H}, \mathrm{t})$.
4-DMAP.HOTf ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.15-8.12(2 \mathrm{H}, \mathrm{t}), 6.77-6.75(2 \mathrm{H}, \mathrm{d}), 3.26(6 \mathrm{H}, \mathrm{s})$.
e. Crystals of $\mathrm{PhICl}_{2}-\mathrm{NEt}_{4} \mathrm{Cl}$

Tetraethylammonium chloride ($3 \mathrm{mg}, 0.018 \mathrm{mmol}$) was added to a warm solution of $\mathrm{PhICl}_{2}(5 \mathrm{mg}, 0.018$ mmol) in minimum dichloromethane. The reaction mixture was stirred until the solution turned clear before cooling $\left(-20^{\circ} \mathrm{C}\right)$. Pale yellow needle-like crystals (91%) were obtained overnight.
ii. Conversion of Anisole to p-Chloroanisole

PhICl_{2} was dissolved in CDCl_{3} to obtain a 0.09 M solution. Subsequently, anisole (1 eq.) and the additive were added to the solution. The reaction was stirred for 1 hour. An aliquot ($600 \mu \mathrm{~L}$) was taken at $\mathrm{t}=1$ hour and ${ }^{1} \mathrm{H}$ NMR was recorded. The amounts of PhICl_{2}, anisole, CDCl_{3} and respective additive used in each reaction are summarised in Table S1.

Table S 1 . Amounts of PhICl_{2}, anisole, CDCl_{3} and respective additive used.

Additive Name	mol\% of additive	Amount of $\mathbf{P h I C l}_{\mathbf{2}} \mathbf{(m g)}$	Amount of Anisole (mg)	$\begin{gathered} \text { Amount of } \\ \mathrm{CDCl}_{3} \\ (\mathrm{~mL}) \\ \hline \end{gathered}$	Amount of additive
None	0	25	9.8	1	-
Pyridine	20\%	50	19.6	2	$2.9 \mu \mathrm{~L}$
Pyridine. HCl	20\%	50	19.6	2	4.2 mg
Pyridine.HOTf	20\%	25	9.8	1	4.2 mg
Pyridine.HOTf	50\%	25	9.8	1	10.4 mg
$\mathrm{NBu}_{4} \mathrm{Cl}$	20\%	25	9.8	1	5.0 mg
$\mathrm{HCl} . \mathrm{Et}_{2} \mathrm{O}$	20\%	100	39.3	4	$36 \mu \mathrm{~L}$
$\mathrm{NBu}_{4} \mathrm{OTf}$	20\%	25	9.8	1	7.1 mg
4-DMAP	20\%	50	19.6	2	4.4 mg
4-DMAP.HCl	20\%	50	19.6	2	5.8 mg
4-DMAP.HOTf	20\%	25	9.8	1	5.0 mg
3-Cl-4-DMAP	20\%	50	19.6	2	5.7 mg
3-Cl-4-DMAP.HCl	20\%	50	19.6	2	7.0 mg
$\mathrm{NBu}_{4} \mathrm{Cl}$	5\%	100	39.3	4	5.0 mg
NaCl	20\%	50	19.6	2	2.1 mg
LiCl	20\%	100	39.3	4	3.1 mg
LiCl	50\%	50	19.6	2	7.7 mg

iii. Decomposition of PhICl_{2} with time

PhICl_{2} was dissolved in CDCl_{3} to obtain a 0.09 M solution. Subsequently, the additive was added to the solution. The amount of solution in vial was marked as initial volume. The reaction was stirred in an open vial. Aliquots $(600 \mu \mathrm{~L})$ were taken from reaction vial for periodic NMR analysis at $\mathrm{t}=10$ minutes, 30 minutes, 1 hour, 2 hours, 3 hours and 4 hours. Then, the vial was covered with perforated parafilm to minimize CDCl_{3} loss to evaporation. The reaction was continuously stirred for 20 hours. CDCl_{3} was
topped up to initial volume mark and another NMR was recorded. The amounts of $\mathrm{PhICl}_{2}, \mathrm{CDCl}_{3}$ and respective additive used in each reaction are summarised in Table S 2 .

Table S2. Amounts of $\mathrm{PhICl}_{2}, \mathrm{CDCl}_{3}$ and respective additive used.

Additive Name	Amount of PhICl	Amount of $\mathbf{C D C l}_{\mathbf{3}}$	Amount of additive
None	100 mg	1 mL	0 mg
Pyridine	50 mg	2 mL	$2.9 \mu \mathrm{~L}$
Pyridine. HCl	50 mg	1 mL	4.2 mg
Pyridine. HOTf	25 mg	1 mL	4.2 mg
$\mathrm{NBu}_{4} \mathrm{Cl}$	25 mg	2 mL	5 mg
$\mathrm{HCl}_{4} \mathrm{Et} \mathrm{O}$	100 mg	4 mL	$36 \mu \mathrm{~L}$
$\mathrm{NBu}_{2} \mathrm{OTf}$	25 mg	1 mL	7.12 mg
LiCl	100 mg	4 mL	3.1 mg

iv. BindFit NMR titrations procedure
PhICl_{2} was dissolved in CDCl_{3} to form a stock solution. Aliquots ($600 \mu \mathrm{~L}$) of stock solution were then transferred to six different vials. To each vial, amount of additive corresponding to $1,2,3,4,5$ and 10 equivalents was added. The reaction mixtures were taken for NMR analysis. The concentration of PhICl_{2} for each reaction was calculated by comparing ratio of PhICl_{2} and PhI by NMR integration with actual concentration of stock solution. The corresponding amounts of all components used for each manipulation are summarised in Table S 3 and Table S 4 for $\mathrm{NBu}_{4} \mathrm{Cl}$ and $\mathrm{NBu}_{4} \mathrm{OTf}$, respectively. The data obtained from NMR investigation was processed using BindFit ${ }^{2}$ to calculate the binding constant.

Table S3. Amounts of components involved in $\mathrm{PhICl}_{2}-\mathrm{NBu}_{4} \mathrm{Cl}$ BindFit experiment.

Stock Solution Concentration: 0.036M PhICl $\mathbf{\text { in } \mathbf { C D C l } _ { 3 }}$					
NMR Tube no.	PhICl_{2} equivalent	$\mathrm{NBu} \mathbf{N C l}_{4}$ equivalent	$\mathrm{NBu}_{4} \mathrm{Cl}$ (mg)	$\mathrm{NBu}_{4} \mathrm{Cl}$ Concentration (M)	PhICl_{2} Concentration (M)
1	1	1	6.1	0.037	0.022
2	1	2	12.2	0.074	0.020
3	1	3	18.3	0.111	0.014
4	1	4	24.4	0.148	0.015
5	1	5	30.5	0.185	0.016
6	1	10	60.6	0.370	0.006

Table S4. Amounts of components involved in $\mathrm{PhICl}_{2}-\mathrm{NBu}_{4} \mathrm{OTf}$ BindFit experiment.

Stock Solution Concentration: 0.023M PhICl $\mathbf{i n ~ C D C l}_{\mathbf{3}}$					
NMR Tube no.	PhICl_{2} equivalent	$\mathrm{NBu}_{4} \mathrm{OTf}$ equivalent	$\mathrm{NBu}_{4} \mathrm{OTf}$ (mg)	$\mathrm{NBu}_{4} \mathrm{OTf}$ Concentration (M)	PhICl_{2} Concentration (M)
1	1	1	5.3	0.023	0.023
2	1	2	10.6	0.045	0.023
3	1	3	15.9	0.068	0.023
4	1	4	21.2	0.091	0.023
5	1	5	26.5	0.114	0.023
6	1	10	53.0	0.227	0.023

v. Electrochemical procedure

An electrochemical cell was set-up using a CH instruments 660E potentiostat, using a GC electrode as the working, Au wire as auxiliary, and an $\mathrm{Ag} / \mathrm{Ag}^{+}$reference electrode was sheathed with an internal solution of $0.1 \mathrm{M} \mathrm{TBAPF}_{6}$. The electrolyte solutions were prepared under an inert atmosphere to minimise the amount of water and oxygen in the solution.

The GC electrode was cleaned prior with acetone and ethanol washes, and polished using $0.3 \mu \mathrm{~m}$ alumina. The Au wire was cleaned prior to use with acetone and ethanol washes and sanded back with P3000 silicon carbide sandpaper. Each experiment contained 1 ml of $0.1 \mathrm{M} \mathrm{TBAPF}_{6}$ electrolyte, with 1.5 mM of PhICl_{2}. Potentials were scanned between -3 V to +4 V to determine electroactive working window, and 0 to -3 V for observing reductions of PhICl_{2} at $200 \mathrm{mV} / \mathrm{s}$. To calibrate the redox potentials, ferrocene was added and $\mathrm{Ep}{ }^{1 / 2}$ determined for $\mathrm{Fc} / \mathrm{Fc}^{+}$for each experiment.
III. NMR Investigations
$\left(\mathrm{a}=\mathrm{PhICl}_{2}, \mathrm{~b}=\mathrm{PhI}, \mathrm{c}=\right.$ Anisole, $\mathrm{d}=4$-Chloroanisole, $\mathrm{e}=2$-chloroanisole, $\mathrm{f}=$ corresponding pyridinium chloride)
i. Conversion of anisole to p-chloroanisole
a. PhICl_{2} only

Figure $\mathrm{S} 1 .{ }^{1} \mathrm{H}$ NMR spectrum of PhICl_{2} and anisole at $\mathrm{t}=1$ hour in CDCl_{3}.

Figure S2. ${ }^{1} \mathrm{H}$ NMR spectrum of PhICl_{2} and anisole at $\mathrm{t}=1$ hour in CDCl_{3} showing normalised integrals for anisole methyl (3.81 ppm), 2-chloroanisole methyl (3.90 ppm) and 4-chloroanisole methyl (3.78 ppm) protons.

Figure $\mathrm{S} 3 .{ }^{1} \mathrm{H}$ NMR spectrum of PhICl_{2} and anisole at $\mathrm{t}=20$ hours in CDCl_{3}.

Figure $\mathrm{S} 4 .{ }^{1} \mathrm{H}$ NMR spectrum of PhICl_{2} and anisole at $\mathrm{t}=20$ hours in CDCl_{3} showing normalised integrals for anisole methyl (3.81 ppm), 2-chloroanisole methyl (3.90 ppm) and 4-chloroanisole methyl (3.78 ppm) protons.
b. $\mathrm{PhICl}_{2}+$ Pyridine (20%)

Figure S5. ${ }^{1} \mathrm{H}$ NMR spectrum of PhICl_{2}, anisole and 20% pyridine at $\mathrm{t}=1$ hour in CDCl_{3}.

Figure $\mathrm{S} 6 .{ }^{1} \mathrm{H}$ NMR spectrum of PhICl_{2}, anisole and 20% pyridine at $\mathrm{t}=1$ hour in CDCl_{3} showing normalised integrals for anisole methyl (3.81 ppm), 2-chloroanisole methyl (3.90 ppm) and 4chloroanisole methyl (3.78 ppm) protons.
c. $\mathrm{PhICl}_{2}+$ Pyridine. $\mathrm{HCl}(20 \%)$

Figure $\mathrm{S} 7 .{ }^{1} \mathrm{H}$ NMR spectrum of PhICl_{2}, anisole and 20% pyridine. HCl at $\mathrm{t}=1$ hour in CDCl_{3}.

Figure S8. ${ }^{1} \mathrm{H}$ NMR spectrum of PhICl_{2}, anisole and 20% pyridine. HCl at $\mathrm{t}=1$ hour in CDCl_{3} showing normalised integrals for anisole methyl (3.81 ppm), 2-chloroanisole methyl (3.90 ppm) and 4-chloroanisole methyl (3.78 ppm) protons.
d. $\mathrm{PhICl}_{2}+$ Pyridine. $\operatorname{HOTf}(20 \%)$

Figure S9. ${ }^{1} \mathrm{H}$ NMR spectrum of PhICl_{2}, anisole and 20% pyridine. HOTf at $\mathrm{t}=1$ hour in CDCl_{3}.

Figure $\mathrm{S} 10 .{ }^{1} \mathrm{H}$ NMR spectrum of PhICl_{2}, anisole and 20% pyridine. HOTf at $\mathrm{t}=1$ hour in CDCl_{3} showing normalised integrals for anisole methyl (3.81 ppm), 2-chloroanisole methyl (3.90 ppm) and 4-chloroanisole methyl (3.78 ppm) protons.
e. $\mathrm{PhICl}_{2}+$ Pyridine. $\mathrm{HOTf}(50 \%)$

Figure $\mathrm{S} 11 .{ }^{1} \mathrm{H}$ NMR spectrum of PhICl_{2}, anisole and 50% pyridine. HOTf at $\mathrm{t}=1$ hour in CDCl_{3}.

Figure $\mathrm{S} 12 .{ }^{1} \mathrm{H}$ NMR spectrum of PhICl_{2}, anisole and 50% pyridine. HOTf at $\mathrm{t}=1$ hour in CDCl_{3} showing normalised integrals for anisole methyl (3.81 ppm), 2-chloroanisole methyl (3.90 ppm) and 4-chloroanisole methyl (3.78 ppm) protons.
f. $\mathrm{PhICl}_{2}+\mathrm{NBu}_{4} \mathrm{Cl}(20 \%)$

Figure S13. ${ }^{1} \mathrm{H}$ NMR spectrum of PhICl_{2}, anisole and $20 \% \mathrm{NBu}_{4} \mathrm{Cl}$ at $\mathrm{t}=1$ hour in CDCl_{3}.

Figure S14. Methyl region ${ }^{1} \mathrm{H}$ NMR spectrum of PhICl_{2}, anisole and $20 \% \mathrm{NBu}_{4} \mathrm{Cl}$ at $\mathrm{t}=1$ hour in CDCl_{3} showing normalised integrals for anisole methyl (3.81 ppm), 2-chloroanisole methyl (3.90 ppm) and 4-chloroanisole methyl (3.78 ppm) protons.
g. $\mathrm{PhICl}_{2}+\mathrm{HCl}^{2} \mathrm{Et}_{2} \mathrm{O}(20 \%)$

Figure $\mathrm{S} 15 .{ }^{1} \mathrm{H}$ NMR spectrum of PhICl_{2}, anisole and $20 \% \mathrm{HCl}^{2} \mathrm{Et} 2 \mathrm{O}$ at $\mathrm{t}=1$ hour in CDCl_{3}.

Figure S16. Methyl region ${ }^{1} \mathrm{H}$ NMR spectrum of PhICl_{2}, anisole and $20 \% \mathrm{HCl}^{2} \mathrm{Et}_{2} \mathrm{O}$ at $\mathrm{t}=1$ hour in CDCl_{3} showing normalised integrals for anisole methyl (3.81 ppm), 2-chloroanisole methyl $(3.90 \mathrm{ppm})$ and 4 -chloroanisole methyl (3.78 ppm) protons.
h. $\mathrm{PhICl}_{2}+\mathrm{NBu}_{4} \mathrm{OTf}(20 \%)$

Figure $\mathrm{S} 17 .{ }^{1} \mathrm{H}$ NMR spectrum of PhICl_{2}, anisole and $20 \% \mathrm{NBu}_{4} \mathrm{OTf}$ at $\mathrm{t}=1$ hour in CDCl_{3}.

Figure S18. Methyl region ${ }^{1} \mathrm{H}$ NMR spectrum of PhICl_{2}, anisole and $20 \% \mathrm{NBu}_{4} \mathrm{OTf}$ at $\mathrm{t}=1$ hour in CDCl_{3} showing normalised integrals for anisole methyl (3.81 ppm), 2-chloroanisole methyl (3.90 ppm) and 4-chloroanisole methyl (3.78 ppm) protons.
i. $\mathrm{PhICl}_{2}+4$-DMAP (20\%)

Figure $\mathrm{S} 19 .{ }^{1} \mathrm{H}$ NMR spectrum of PhICl_{2}, anisole and 20% 4-DMAP at $\mathrm{t}=1$ hour in CDCl_{3}.

Figure S20. Methyl region ${ }^{1} \mathrm{H}$ NMR spectrum of PhICl_{2}, anisole and 20\% 4-DMAP at $\mathrm{t}=1$ hour in CDCl_{3} showing normalised integrals for anisole methyl (3.81 ppm), 2-chloroanisole methyl (3.90 ppm) and 4-chloroanisole methyl (3.78 ppm) protons.
j. $\mathrm{PhICl}_{2}+4$-DMAP. $\mathrm{HCl}(20 \%)$

Figure $\mathrm{S} 21 .{ }^{1} \mathrm{H}$ NMR spectrum of PhICl_{2}, anisole and 20% 4-DMAP. HCl at $\mathrm{t}=1$ hour in CDCl_{3}.

Figure S22. Methyl region ${ }^{1} \mathrm{H}$ NMR spectrum of PhICl_{2}, anisole and $20 \% 4$-DMAP. HCl at $\mathrm{t}=1$ hour in CDCl_{3} showing normalised integrals for anisole methyl (3.81 ppm), 2-chloroanisole methyl (3.90 ppm) and 4-chloroanisole methyl (3.78 ppm) protons.
k. $\mathrm{PhICl}_{2}+4$-DMAP. $\operatorname{HOTf}(20 \%)$

Figure $\mathrm{S} 23 .{ }^{1} \mathrm{H}$ NMR spectrum of PhICl_{2}, anisole and 20% 4-DMAP.HOTf at $\mathrm{t}=1$ hour in CDCl_{3}.

Figure S24. Methyl region ${ }^{1} \mathrm{H}$ NMR spectrum of PhICl_{2}, anisole and 20\% 4-DMAP.HOTf at $\mathrm{t}=1$ hour in CDCl_{3} showing normalised integrals for anisole methyl (3.81 ppm), 2-chloroanisole methyl (3.90 ppm) and 4-chloroanisole methyl (3.78 ppm) protons.

1. $\mathrm{PhICl}_{2}+3$-Cl-4-DMAP (20%)

Figure S25. ${ }^{1} \mathrm{H}$ NMR spectrum of PhICl_{2}, anisole and $20 \% 3$ - $\mathrm{Cl}-4-\mathrm{DMAP}$ at $\mathrm{t}=1$ hour in CDCl_{3}.

Figure S26. Methyl region ${ }^{1} \mathrm{H}$ NMR spectrum of PhICl_{2}, anisole and 20\% 3-Cl-4-DMAP at $\mathrm{t}=1$ hour in CDCl_{3} showing normalised integrals for anisole methyl (3.81 ppm), 2-chloroanisole methyl (3.90 ppm) and 4-chloroanisole methyl (3.78 ppm) protons.
m. $\mathrm{PhICl}_{2}+3$-Cl-4-DMAP. HCl (20\%)

Figure S27. ${ }^{1} \mathrm{H}$ NMR spectrum of PhICl_{2}, anisole and $20 \% 3-\mathrm{Cl}-4-\mathrm{DMAP} . \mathrm{HCl}$ at $\mathrm{t}=1$ hour in CDCl_{3}.

Figure S28. Methyl region ${ }^{1} \mathrm{H}$ NMR spectrum of PhICl_{2}, anisole and 20\% 3-Cl-4-DMAP. HCl at t $=1$ hour in CDCl_{3} showing normalised integrals for anisole methyl (3.81 ppm), 2-chloroanisole methyl (3.90 ppm) and 4-chloroanisole methyl (3.78 ppm) protons.
n. $\mathrm{PhICl}_{2}+\mathrm{NBu}_{4} \mathrm{Cl}(5 \%)$

Figure S29. ${ }^{1} \mathrm{H}$ NMR spectrum of PhICl_{2}, anisole and $5 \% \mathrm{NBu}_{4} \mathrm{Cl}$ at $\mathrm{t}=1$ hour in CDCl_{3}.

Figure S30. Methyl region ${ }^{1} \mathrm{H}$ NMR spectrum of PhICl_{2}, anisole and $5 \% \mathrm{NBu}_{4} \mathrm{Cl}$ at $\mathrm{t}=1$ hour in CDCl_{3} showing normalised integrals for anisole methyl (3.81 ppm), 2-chloroanisole methyl (3.90 ppm) and 4-chloroanisole methyl (3.78 ppm) protons.
o. $\mathrm{PhICl}_{2}+\mathrm{NaCl}(20 \%)$

Figure S31. ${ }^{1} \mathrm{H}$ NMR spectrum of PhICl_{2}, anisole and $20 \% \mathrm{NaCl}$ at $\mathrm{t}=1$ hour in CDCl_{3}.

Figure S32. Methyl region ${ }^{1} \mathrm{H}$ NMR spectrum of PhICl_{2}, anisole and $20 \% \mathrm{NaCl}$ at $\mathrm{t}=1$ hour in CDCl_{3} showing normalised integrals for anisole methyl (3.81 ppm), 2-chloroanisole methyl (3.90 ppm) and 4-chloroanisole methyl (3.78 ppm) protons.
p. $\mathrm{PhICl}_{2}+\mathrm{LiCl}(20 \%)$

Figure S33. ${ }^{1} \mathrm{H}$ NMR spectrum of PhICl_{2}, anisole and $20 \% \mathrm{LiCl}$ at $\mathrm{t}=1$ hour in CDCl_{3}.

Figure S34. Methyl region ${ }^{1} \mathrm{H}$ NMR spectrum of PhICl_{2}, anisole and $20 \% \mathrm{LiCl}$ at $\mathrm{t}=1$ hour in CDCl_{3} showing normalised integrals for anisole methyl (3.81 ppm), 2-chloroanisole methyl (3.90 ppm) and 4-chloroanisole methyl (3.78 ppm) protons.
q. $\mathrm{PhICl}_{2}+\mathrm{LiCl}(50 \%)$

Figure $\mathrm{S} 35 .{ }^{1} \mathrm{H}$ NMR spectrum of PhICl_{2}, anisole and $50 \% \mathrm{LiCl}$ at $\mathrm{t}=1$ hour in CDCl_{3}.

Figure S36. Methyl region ${ }^{1} \mathrm{H}$ NMR spectrum of PhICl_{2}, anisole and $50 \% \mathrm{LiCl}$ at $\mathrm{t}=1$ hour in CDCl_{3} showing normalised integrals for anisole methyl (3.81 ppm), 2-chloroanisole methyl (3.90 ppm) and 4-chloroanisole methyl (3.78 ppm) protons.
ii. Decomposition of PhICl_{2}
a. PhICl_{2} only

Figure S37. ${ }^{1} \mathrm{H}$ NMR spectra overlay for PhICl_{2} in CDCl_{3} at $\mathrm{t}=10 \mathrm{~min}$ (red), 30 min (yellow), 1 hr (green), 2 hrs (cyan), 3 hrs (blue), 4 hrs (violet) and 20 hrs (magenta).
b. $\mathrm{PhICl}_{2}+$ Pyridine (20\%)

Figure $\mathrm{S} 38 .{ }^{1} \mathrm{H}$ NMR spectra for PhICl_{2} and 20% pyridine in CDCl_{3} at $\mathrm{t}=10 \mathrm{~min}(\mathrm{red}), 30 \mathrm{~min}$ (yellow), 1 hr (green), 2 hrs (cyan), 3 hrs (blue), 4 hrs (violet) and 20 hrs (magenta).
c. $\mathrm{PhICl}_{2}+$ Pyridine. $\mathrm{HCl}(20 \%)$

Figure S39. ${ }^{1} \mathrm{H}$ NMR spectra for PhICl_{2} and 20% pyridine. HCl in CDCl_{3} at $\mathrm{t}=10 \mathrm{~min}$ (red), 30 min (yellow), 1 hr (green), 2 hrs (cyan), 3 hrs (blue), 4 hrs (violet) and 20 hrs (magenta).
d. $\mathrm{PhICl}_{2}+$ Pyridine. $\mathrm{HOTf}(20 \%)$

Figure S40. ${ }^{1} \mathrm{H}$ NMR spectra for PhICl_{2} and 20% pyridine. HOTf in CDCl_{3} at $\mathrm{t}=10 \mathrm{~min}$ (red), 30 min (yellow), 1 hr (green), 2 hrs (cyan), 3 hrs (blue), 4 hrs (violet) and 20 hrs (magenta).
e. $\mathrm{PhICl}_{2}+\mathrm{NBu}_{4} \mathrm{Cl}(20 \%)$

Figure $\mathrm{S} 41 .{ }^{1} \mathrm{H}$ NMR spectra for PhICl_{2} and $20 \% \mathrm{NBu}_{4} \mathrm{Cl}^{\text {in }} \mathrm{CDCl}_{3}$ at $\mathrm{t}=10 \mathrm{~min}$ (red), 30 min (yellow), 1 hr (green), 2 hrs (cyan), 3 hrs (blue), 4 hrs (violet) and 20 hrs (magenta).
f. $\mathrm{PhICl}_{2}+\mathrm{HCl}^{2} \mathrm{Et}_{2} \mathrm{O}(20 \%)$

Figure $\mathrm{S} 42 .{ }^{1} \mathrm{H}$ NMR spectra for PhICl_{2} and $20 \% \mathrm{HCl}^{2} \mathrm{Et}_{2} \mathrm{O}$ in CDCl_{3} at $\mathrm{t}=10 \mathrm{~min}(\mathrm{red}), 30 \mathrm{~min}$ (yellow), 1 hr (green), 2 hrs (cyan), 3 hrs (blue), 4 hrs (violet) and 20 hrs (magenta).

g. $\mathrm{PhICl}_{2}+\mathrm{NBu}_{4} \mathrm{OTf}(20 \%)$

Figure S43. ${ }^{1} \mathrm{H}$ NMR spectra for PhICl_{2} and $20 \% \mathrm{NBu}_{4} \mathrm{OTf}$ in CDCl_{3} at $\mathrm{t}=10 \mathrm{~min}$ (red), 30 min (yellow), 1 hr (green), 2 hrs (cyan), 3 hrs (blue), 4 hrs (violet) and 20 hrs (magenta).
h. $\mathrm{PhICl}_{2}+\mathrm{LiCl}(20 \%)$

Figure $\mathrm{S} 44 .{ }^{1} \mathrm{H}$ NMR spectra for PhICl_{2} and $20 \% \mathrm{LiCl}$ in CDCl_{3} at $\mathrm{t}=10 \mathrm{~min}$ (red), 30 min (yellow), 1 hr (green), 2 hrs (cyan), 3 hrs (blue), 4 hrs (violet) and 20 hrs (magenta).
iii. BindFit experiment
a. $\mathrm{PhICl}_{2}+\mathrm{NBu}_{4} \mathrm{Cl}(20 \%)$

Link: http://app.supramolecular.org/bindfit/view/7dbfd70a-44d3-43da-9974-49dc3782779e

Table S5. Excel data used for BindFit experiment.

Host concentration / M	Guest concentration / M	Proton 1	Proton 2	Proton 3
$2.20 \mathrm{E}-02$	0.037	8.164	7.572	7.456
$2.00 \mathrm{E}-02$	0.074	8.123	7.530	7.418
$1.40 \mathrm{E}-02$	0.111	8.092	7.499	7.390
$1.50 \mathrm{E}-02$	0.148	8.060	7.468	7.360
$1.60 \mathrm{E}-02$	0.185	8.033	7.442	7.336
$6.00 \mathrm{E}-03$	0.370	7.888	7.306	7.203

Figure S45. ${ }^{1} \mathrm{H}$ NMR spectrum overlay for ortho proton of PhICl_{2} and 0 (red), 1 (yellow), 2 (green), 3 (cyan), 4 (blue), 5 (purple) and 10 (magenta) equivalents of $\mathrm{NBu}_{4} \mathrm{Cl}$ in CDCl_{3}.
b. $\mathrm{PhICl}_{2}+\mathrm{NBu}_{4} \mathrm{OTf}(20 \%)$

Link: http://app.supramolecular.org/bindfit/view/b78d3215-d747-4b10-aa2b-4d7887163379

Table S6. Excel data used for BindFit experiment.

Host concentration / M	Guest concentration / M	Proton 1	Proton 2	Proton 3
0.023	0.023	8.184	7.600	7.479
0.023	0.045	8.180	7.599	7.477
0.023	0.068	8.174	7.596	7.474
0.023	0.091	8.169	7.594	7.471
0.023	0.113	8.165	7.592	7.469
0.023	0.227	8.138	7.576	7.451

Figure S46. ${ }^{1} \mathrm{H}$ NMR spectrum overlay for ortho proton of PhICl_{2} and 0 (red), 1 (yellow), 2 (green), 3 (cyan), 4 (blue), 5 (purple) and 10 (magenta) equivalents of $\mathrm{NBu}_{4} \mathrm{OTf}$ in CDCl_{3}.
IV. Electrochemical Analysis

Table S7. Reduction potential values for PhICl_{2} with different mol $\%$ of $\mathrm{NBu}_{4} \mathrm{Cl}$ added.

	$\mathbf{0 \%} \mathbf{~ C l}^{-}$	$\mathbf{5 ~ m o l} \% \mathbf{C l}^{-}$	$\mathbf{2 0} \mathbf{~ m o l} \mathbf{~ C l}^{-}$
$\mathrm{Ep}^{1 / 2}($ ferrocene $)$	+0.408 V	+0.407 V	+0.500 V
${\mathrm{R}-\mathbf{I C l}_{\mathbf{2}}\left(\mathrm{vs} \mathrm{Ag} / \mathrm{Ag}^{+}\right)}^{\mathrm{R}-\mathbf{I C l}_{\mathbf{2}}\left(\mathrm{vs} \mathrm{Fc} / \mathrm{Fc}^{+}\right)}$	-0.493 V	-0.688 V	-0.698 V
Difference from $0 \% \mathrm{Cl}^{-}$	0.901 V	-1.095 V	-1.198 V
$\mathbf{P h I}-(\mathrm{X})_{2}\left(\mathrm{vs} \mathrm{Ag} / \mathrm{Ag}^{+}\right)$	-2.744 V	-0.195 V	-0.205 V
$\mathbf{P h I}-(\mathrm{X})_{2}\left(\mathrm{vs} \mathrm{Fc} / \mathrm{Fc}^{+}\right)$	-3.152 V	-2.785 V	-2.762 V

Figure S47. Cyclic voltammogram of TBAPF_{6} in MeCN . Scan rate of $200 \mathrm{mV} / \mathrm{s}$. Redox peak at $\mathrm{Ep}^{1 / 2}$ at ~-0.85 V is indicative of O_{2}.

Figure S 48 . Cyclic voltammogram of PhICl_{2} with differing concentrations of $\mathrm{NBu}_{4} \mathrm{Cl}$ in $\mathrm{MeCN}(0.1 \mathrm{M}$ TBAPF_{6}). Scan rate of $200 \mathrm{mV} / \mathrm{s}$.

V. X-ray Crystallographic Details

Tetraethylammonium chloride ($3 \mathrm{mg}, 0.018 \mathrm{mmol}$) was added to a warm solution of $\mathrm{PhICl}_{2}(5 \mathrm{mg}, 0.018$ mmol) in minimum dichloromethane. The reaction mixture was stirred until the solution turned clear before cooling $\left(-20^{\circ} \mathrm{C}\right)$. Pale yellow needle-like crystals (91\%) were obtained overnight.

X-ray data were collected using a Rigaku XtaLAB Synergy, Dualflex, Pilatus 300K diffractometer employing monochromated Mo-K α radiation at $100(2) \mathrm{K}$ and solved using SHELXT with further structural refinements carried out using SHELXL within the OLEX2 graphical user interface. Non-hydrogen atoms were refined anisotropically and hydrogen atoms placed using a riding model. The CIF has been deposited with the CSD (CCDC 2091146).

Crystal Data for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{Cl}_{5} \mathrm{I}_{2} \mathrm{~N}(M=715.50 \mathrm{~g} / \mathrm{mol})$: monoclinic, space group $I 2 / a$ (no. 15), $a=9.8786(4) \AA$, $b=17.2644(6) \AA, c=15.6853(6) \AA, \beta=101.359(4)^{\circ}, V=2622.70(18) \AA^{3}, Z=4, T=100(2) \mathrm{K}, \mu(\mathrm{Mo} \mathrm{K} \alpha)=$ $2.916 \mathrm{~mm}^{-1}$, Dcalc $=1.812 \mathrm{~g} / \mathrm{cm}^{3}, 16675$ reflections measured $\left(4.822^{\circ} \leq 2 \Theta \leq 56.562^{\circ}\right), 3242$ unique $\left(R_{\mathrm{int}}=\right.$ $\left.0.0390, \mathrm{R}_{\text {sigma }}=0.0290\right)$ which were used in all calculations. The final R_{1} was $0.0239(\mathrm{I}>2 \sigma(\mathrm{I}))$ and $w R_{2}$ was 0.0506 (all data).

2. COMPUTATIONAL SECTION

All the calculations were carried out using Gaussian 16 revision C. 01 unless noted. ${ }^{3}$ Geometry optimisation was carried out at the B3LYP-D3(BJ)/def2-TZVPPD (PCM, SMD, chloroform) level of theory. ${ }^{4-8}$ Some geometries were also calculated with dichloromethane solvation for comparison. Harmonic vibrational frequencies were computed analytically at the same level of theory in order to characterise the stationary points as minima on the potential energy surface and determine thermochemical properties. Molecular orbital (MO) and Natural Bond Orbital (NBO) analysis was caried out on the optimised geometries at the same level of theory. NBO analysis was performed using NBO 6.0. ${ }^{9}$

ORCA 5.0.0 was used to perform single point calculations at the DLPNO-CCSD(T)/ma-def2-QZVPP level of theory (inclusive of CPCM solvation). ${ }^{10}$ The single point electronic energies were converted to free energies
(ΔG) by adding the free energy correction calculated at the B3LYP-D3(BJ)/def2-TZVPPD (SMD) level of theory.

Cartesian coordinates computed at the B3LYP-D3(BJ)/def2-TZVPPD (SMD, chloroform) level of

 theory. Units of Ångstrom.| $\mathbf{P h I C l}_{\mathbf{2}}$ | | | |
| :--- | ---: | ---: | ---: |
| $\mathrm{Ee}=-1450.02927382$ | | | |
| I | -1.132833 | 0.000002 | -0.000004 |
| C | 0.976397 | 0.000005 | -0.000003 |
| C | 1.635160 | -0.154816 | -1.209932 |
| C | 3.025212 | -0.155760 | -1.197176 |
| C | 3.715721 | -0.000005 | 0.000000 |
| C | 3.025210 | 0.155756 | 1.197175 |
| C | 1.635158 | 0.154820 | 1.209928 |
| H | 1.089019 | 0.274700 | 2.133647 |
| H | 3.563654 | 0.277115 | 2.126987 |
| H | 4.797174 | -0.000009 | 0.000002 |
| H | 3.563657 | -0.277124 | -2.126986 |
| H | 1.089022 | -0.274693 | -2.133652 |
| Cl | -1.125847 | -2.533300 | -0.001334 |
| Cl | -1.125869 | 2.533303 | 0.001348 |

$\mathrm{PhICl}_{3}{ }^{-}$

$\mathrm{Ee}=-1910.42958712$			
I	-0.691279	0.016262	0.000012
C	1.449401	0.006666	0.000838
C	2.124877	0.014625	-1.211372
C	3.515774	-0.007873	-1.204282
C	4.209024	-0.037673	0.001422
C	3.514813	-0.042909	1.207295
C	2.123767	-0.020032	1.213647
H	1.578676	-0.026934	2.146986
H	4.053509	-0.066464	2.145301
H	5.290775	-0.057026	0.001486
H	4.055172	-0.003758	-2.142171
H	1.580671	0.034861	-2.145029
Cl	-0.565638	-2.526505	-0.012108
Cl	-0.562970	2.569762	0.005873
Cl	-3.668273	-0.056161	0.003147

PhI			
$\mathrm{Ee}=-529.569713507$			
I	0.000000	0.000000	1.550509
C	0.000000	0.000000	-0.564319
C	0.000000	1.210860	-1.246275
C	0.000000	1.202771	-2.637601
C	0.000000	0.000000	-3.334931
C	0.000000	-1.202771	-2.637601
C	0.000000	-1.210860	-1.246275
H	0.000001	-2.146340	-0.706061
H	0.000000	-2.142883	-3.173156
H	0.000000	0.000000	-4.416516
H	0.000000	2.142883	-3.173156
H	-0.000001	2.146340	-0.706061
Cl			
$\mathrm{Ee}=-920.429940367$			
Cl	0.000000	0.000000	1.006207
Cl	0.000000	0.000000	-1.006207

$\left[\mathbf{P h I C l}_{2}-\mathrm{Cl}^{2}-\mathrm{PhICl}_{2}\right]^{-}$			
$\mathrm{Ee}=-3360.47333631$			
I	-2.191071	-0.646178	0.111409
C	-3.683042	0.868162	0.160534
C	-4.787054	0.702381	0.984270
C	-5.752135	1.703106	1.013421
C	-5.602251	2.842398	0.229415
C	-4.487587	2.988225	-0.589882
C	-3.514302	1.995725	-0.630185
H	-2.644515	2.101256	-1.262881
H	-4.371326	3.874088	-1.199784

H	-6.355740	3.618143	0.257119
H	-6.618975	1.590048	1.650718
H	-4.895278	-0.184715	1.591889
Cl	-3.518509	-1.762577	-1.747078
Cl	-1.017347	0.610720	1.992236
Cl	0.000139	-2.795352	0.000690
I	2.191495	-0.646720	-0.111351
C	3.682664	0.868405	-0.160835
C	4.786992	0.703037	-0.984224
C	5.751501	1.704311	-1.013391
C	5.600753	2.843737	-0.229741
C	4.485773	2.989161	0.589199
C	3.513048	1.996111	0.629501
H	2.643026	2.101321	1.261928
H	4.368829	3.875125	1.198821
H	6.353814	3.619897	-0.257451
H	6.618582	1.591580	-1.650419
H	4.895898	-0.184172	-1.591559
Cl	1.017681	0.608167	-1.993430
Cl	3.519040	-1.761403	1.748174

3. REFERENCES

1. Poynder, T. B.; Orué, A. I. C.; Sharp-Bucknall, L.; Flynn, M. T.; Wilson, D. J.; Arachchige, K. S. A.; Clegg, J. K.; Dutton, J. L., On the activation of PhICl 2 with pyridine. Chemical Communications 2021.
2. Thordarson, P., Determining association constants from titration experiments in supramolecular chemistry. Chemical Society Reviews 2011, 40 (3), 1305-1323.
3. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16 Rev. C.01, Wallingford, CT, 2016.
4. Becke, A. D., Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A 1988, 38 (6), 3098-3100.
5. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H., A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. The Journal of Chemical Physics 2010, 132 (15), 154104.
6. Grimme, S.; Ehrlich, S.; Goerigk, L., Effect of the damping function in dispersion corrected density functional theory. Journal of Computational Chemistry 2011, 32 (7), 1456-1465.
7. Weigend, F.; Ahlrichs, R., Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn : Design and assessment of accuracy. Physical Chemistry Chemical Physics 2005, 7 (18), 3297-3305.
8. Rappoport, D.; Furche, F., Property-optimized Gaussian basis sets for molecular response calculations. The Journal of Chemical Physics 2010, 133 (13), 134105.
9. Glendening, E. D.; Landis, C. R.; Weinhold, F., NBO 6.0: Natural bond orbital analysis program. Journal of Computational Chemistry 2013, 34 (16), 1429-1437.
10. Neese, F., The ORCA program system. WIREs Computational Molecular Science 2012, 2 (1), 73-78.
