ELECTRONIC SUPPORTING INFORMATION (ESI)

for

A Chromotropic Pt^{II}Pd^{II}Co^{II} Coordination Polymer with Dual

Electrocatalytic Activity for Water Reduction and Oxidation

Anna Carissa M. San Esteban, Naoto Kuwamura, Nobuto Yoshinari and Takumi Konno*

Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan

E-mail: konno@chem.sci.osaka-u.ac.jp

	[2]Cl ₄	[2]Br ₄
Formula	$C_{20}H_{92}Cl_4Co_2N_8O_{30}Pd_2Pt_2S_4\\$	$C_{20}H_{92}Br_4Co_2N_8O_{30}Pd_2Pt_2S_4\\$
Colour, shape	Orange, platelet	Orange, platelet
М	1915.89	2093.73
Crystal system	Orthorhombic	Orthorhombic
Space group	$P2_{1}2_{1}2_{1}$	$P2_{1}2_{1}2_{1}$
a /Å	9.0942(2)	9.25625(5)
b /Å	21.9908(5)	21.99085(11)
c /Å	30.830(8)	30.87849(16)
lpha /°	90	90
eta /°	90	90
$\gamma/^{\circ}$	90	90
$V/\text{\AA}^3$	6165.7(16)	6285.40(6)
Ζ	4	4
T/K	100(2)	100(2)
<i>F</i> (000)	3768	4056
$ ho_{ m calcd}$ /g cm ⁻³	2.064	2.213
μ /mm ⁻¹	6.007	2.491
Crystal size /mm ³	0.16×0.10×0.03	0.08×0.05×0.04
	$-9 \le h \le 11,$	$-14 \le h \le 13$
Limiting indices	$-29 \le k \le 21,$	$-35 \le k \le 37,$
	$-38 \le l \le 34$	$-45 \le l \le 44$
$R_1 (I > 2\sigma(I))^{[a]}$	0.0410	0.0394
wR_2 (all data) ^[b]	0.0973	0.1041
GOF	1.042	1.050
Flack parameter	0.015(4)	0.040(5)
CCDC No.	2074818	2074819

Table S1. Crystallographic data for [2]X4.

[a] $R_1 = \Sigma |(|Fo| - |Fc|)| / \Sigma (|Fo|)$. [b] $wR_2 = [\Sigma w (Fo^2 - Fc^2)^2 / \Sigma w (Fo^2)^2]^{1/2}$.

	[2]	[2]Cl ₄		[2]Br ₄	
	Co ^{II}	Co ^{III}	Co ^{II}	Co ^{III}	
Co1	2.01	1.77	1.99	1.75	
Co2	2.00	1.73	2.01	1.73	

Table S2. Bond valence sum (BVS) calculations for Co atoms in [2]X₄.^[S1]

Table S3. Best fitted parameters for $\chi_M T$ versus *T* plots of [2]X₄.

	[2]Cl ₄ (heating)	[2]Cl ₄ (cooling)	[2]Br ₄ (heating)	[2]Br ₄ (cooling)
J / cm^{-1}	-0.966(7)	-0.03(3)	-0.856(7)	-0.12(2)
$B_{2}^{0} / \mathrm{cm}^{-1}$	+108.7(12)	+11.3(5)	+118.3(11)	+13.2(4)
$g_{ m iso}$	2.0758(14)	2.322(7)	2.0472(11)	2.306(6)
T.I.P.	-0.00188(6)	0.00075(13)	-0.00130(5)	0.00121(11)
F ^[a]	2.34×10^{-6}	5.00×10^{-5}	2.56×10 ⁻⁶	2.65×10^{-5}

[a] The agreement factor (F) is defined as $\Sigma [\chi_M T_{exp} - \chi_M T_{calcd}]^2 / \Sigma [\chi_M T_{exp}]^2$.

Table S4. Summary of representative heterogeneous water oxidation catalysts based on cobalt(II)

 coordination compounds.

TOF Electro	olyte Reference #
0.1 M Li	ClO ₄ in This work
H ₂ O/CH ₃	CN (1/4)
0.1 M Li	ClO_4 in This work S2
H ₂ O/CH ₃	CN (1/4)
0.1 M K	PF_6 in
H_2O/CH_3	CN (1/4)
0.2 M Pi b	uffer (pH
6.8	54 3)
0.2 M Pi b	uffer (pH
6.8	3) 54
0.05 s ⁻¹ 0.1 M K	OH aq. S5
	TOF Electric 0044 s^{-1} 0.1 M Li 10025 s^{-1} 0.1 M Li 10025 s^{-1} 0.1 M Li $1100000000000000000000000000000000000$

[a] at 1 mA /cm². [b] L = 1,4-bis(3-pyridylaminomethyl)benzene, H₂adip = adipic acid, 5-H₂adc = 5-nitroisophthalic acid), H₃BTB=1,3,5-benzenetribenzoic acid, dpe=1,2-di(4-pyridyl)ethylene, dppeO₂ = 1,2-bis(diphenylphosphino)ethane dioxide. [c] We calculated the values based on values provided in the literature.

Fig. S1. IR spectra of (a) [1], (b) [2]Cl₄, and (c) [2]Br₄.

Fig. S2. (a) Experimental and (b) simulated PXRD patterns of [2]Cl₄.

Fig. S3. (a) Experimental and (b) simulated PXRD patterns of [2]Br₄.

Fig. S4. Perspective views (left) around the $Pt^{II}_2Pd^{II}_2$ molecule, and (right) around the Co^{II}_2 unit in [2]Br₄. Hydrogen atoms are omitted for clarity. Colour code: Pd, dark green; Pt, off-white; Co, blue; S, yellow; N, light blue; O, pink; C, grey.

Fig. S5. Packing structure of [**2**]Cl₄. Blue dashed lines represent hydrogen bonds. Colour code: Pd, dark green; Pt, off-white; Co, blue; Cl, green; S, yellow; N, light blue; O, pink; C, grey.

Fig. S6. (a) Packing structure of [**2**]Br₄. Blue dashed lines represent hydrogen bonds. Colour code: Pd, dark green; Pt, off-white; Co, blue; Br, brown; S, yellow; N, light blue; O, pink; C, grey.

Fig. S7. Powder X-ray diffraction patterns of (i) [2]X₄, (ii) the sample ([2']X₄) obtained by heating [2]X₄ at 90°C, and (iii) the sample obtained by exposure to [2']X₄ in air: (a) X = Cl, (b) X = Br.

[2']Cl₄: Calcd. for [Co₂(H₂O)₂(1)]Cl₄·H₂O: C, 15.27; H, 3.46; N, 7.12%. Anal. Found: C, 15.26;
H, 3.38; N, 7.09%. [2']Br₄: Calcd. for [Co₂(H₂O)₂(1)]Br₄·H₂O: C, 13.72; H, 3.11; N, 6.40%. Anal.
Found: C, 13.55; H, 3.07; N, 6.28%

Fig. S8. Diffuse reflectance spectra of $[2]X_4$ (orange) and $[2']X_4$ (green): (a) X = Cl, (b) X = Br.

Fig. S9. $\chi_{\rm M}T$ vs. *T* plot of [2]Br₄ (*T* = 10–360 K, and *H* = 0.5 T). Black circles and diamonds indicate the observed data. Red and blue lines indicate the fitting curves. The measurements with increasing temperature from 10 K to 300 K showed an anomaly at approximately 300–360 K, which corresponds to the transformation from [2]Br₄ to [2']Br₄.

Fig. S10. PXRD patterns of [2]Cl₄ (a) before and (b) after bulk electrolysis at -1.2 V.

Fig. S11. PXRD patterns of [2]Br₄ (a) before and after (b) -1.2 V and (c) +1.2 V bulk electrolyses.

Fig. S12. IR spectra of original samples of (a) [1], (b) [2]Cl₄, and (c) [2]Br₄ and after bulk electrolysis at -1.2 V of (d) [2]Cl₄, (e) [2]Br₄ and at +1.2 V of (f) [2]Br₄.

Fig. S13. Proposed mechanisms of (a, c) light-driven water oxidation catalysed by $[Ru(bda)(pic)_2]$ (bda = 2,2'-bipyridine-6,6'-dicarboxylate, pic = picoline) ^[S6] and (b, d) electrocatalytic water oxidation catalysed by [**2**]Br₄.

Fig. S14. CVs of (a) [2]Cl₄ and (b) [2]Br₄ in H₂O-CH₃CN (v/v = 1/4) containing 0.1 M LiClO₄ at a scan rate of 10 mV s⁻¹.

Fig. S15. TG-DTA curves of (a) [2]Cl₄ and (b) [2]Br₄.

Fig. S16. Temperature-dependent PXRD patterns of (a) [2]Cl₄ and (b) [2]Br₄.

Fig. S17. Cyclic voltammograms of the samples modified on glassy carbon electrode in H₂O-CH₃CN (v/v = 1/4) containing 0.1 M LiClO₄ in the multi-scanning mode (1st – 5th scans): (a) [2]Cl₄ in the negative potential range, (b) [2]Br₄ in the negative potential range and (c) [2]Br₄ in the positive potential range.

References.

[S1] R. M. Wood and G. J. Palenik, *Inorg. Chem.* 1998, **37**, 4149.

[S2] A. C. M. San Esteban, N. Kuwamura, T. Kojima and T. Konno, *Inorg. Chem.* 2020, **59**, 14847.

[S3] N. Kuwamura, Y. Kurioka, N. Yoshinari and T. Konno, *Chem. Commun.* 2018, 54, 10766.

[S4] Y. Gong, H. F. Shi, Z. Hao, J. L. Sun and J. H. Lin, *Dalton Trans.* 2013, 42, 12252.

[S5] P. Manna, S. Debgupta, S. Bose and S. K. Das, Angew. Chem. Int. Ed. 2016, 55, 2425.

[S6] M. V. Sheridan, Y. Wang, D. Wang, L. Troian-Gautier, C. J. Dares, B. D. Sherman and T. J. Meyer, *Angew. Chem. Int. Ed.* 2018, 57, 3449.