Chiroptical switching behavior of heteroleptic ruthenium complexes bearing acetylacetonato and tropolonato ligands

Jun Yoshida,^[a]* Kana Yamazaki,^[b] Kazunori Tateyama,^[b] Hidetaka Yuge,^[b] and Hisako Sato^[c]

JY: yoshida.jun@nihon-u.ac.jp

a) Department of Chemistry, College of Humanities & Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan

b) Department of Chemistry, School of Science, Kitasato University, 1-15-1 Kitasato Minami-ku, Sagamihara, 252-0373, Japan

c) Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo-chou, Matsuyama, Ehime 790-8577, Japan.

ESI-MS spectrum

Figure S1 Experimental isotropic pattern of Ru-2 (top) and theoretical isotopic patterns for $[C_{19}H_{17}O_6Ru+H]^+$ (middle) and $[C_{19}H_{17}O_6Ru+Na]^+$ (bottom).

HPLC charts

Figure S2 The HPLC chromatograms of (a) **Ru-0**, (b) **Ru-1**, (c) **Ru-2**, and (d) **Ru-3** obtained in the following conditions; (a) RU-1 column (Shiseido Corp., Japan), methanol, flow rate = 1 ml min⁻¹, (b, c) CHIRALPAK-IA column (Daicel Chemical Industries Co., Ltd. Japan), chloroform/hexane = 2/1 (v/v), flow rate = 6 ml min⁻¹, and (d) CHIRALPAK-IA column, chloroform/hexane = 3/2 (v/v), flow rate = 6 ml min⁻¹.

Figure S3 ORTEP representations of (a) Δ -**Ru-2** and (b) Λ -**Ru-2** (50% probability level), which correspond to 2nd and 1st fractions in the HPLC chromatogram.

∆- Ru-2	Λ- Ru-2
$C_{19}H_{17}O_6Ru$	$C_{19}H_{17}O_6Ru$
442.39	442.39
1.701	1.700
7.649	7.648
0.13×0.10×0.07	0.047×0.038×0.02
100(2)	100(2)
Monoclinic	Monoclinic
-0.014(5)	-0.019(5)
-0.022(4)	-0.024(4)
C_2	C_2
28.6206(4)	28.5743(4)
7.38672(13)	7.3986(1)
8.17443(13)	8.1753(1)
90	90
91.0315(15)	90.911(1)
90	90
1727.90(5)	1728.12(4)
4	4
1.54184	1.54184
CuK _α	CuK _α
10058, 3444, 3421	9684, 3411, 3316
0.027	0.027
238	237
1.108	1.118
0.052	0.052
0.020	0.020
	Δ- Ru -2 C ₁₉ H ₁₇ O ₆ Ru 442.39 1.701 7.649 0.13×0.10×0.07 100(2) Monoclinic -0.014(5) -0.022(4) C ₂ 28.6206(4) 7.38672(13) 8.17443(13) 90 91.0315(15) 90 1727.90(5) 4 1.54184 CuK _α 10058, 3444, 3421 0.027 238 1.108 0.052 0.020

Table S1 Crystallographic and experimental data for Δ - and Λ -Ru-2 (CCDC 2099739 and 2099741).

Figure S4 The time-course CD spectral changes of the acetonitrile solutions containing (a) [Ru(trop)₃] (**Ru-3**) and (b) [Ru(acac)(trop)₂] (**Ru-2**).

Figure S5 ECD spectra of Δ and Λ isomers of **Ru-0**, **Ru-1**, **Ru-2**, and **Ru-3**. The 1st and 2nd fractions in the HPLC chromatograms of ruthenium complexes were all assigned to Λ and Δ isomers, respectively.

Figure S6 Experimental (black) and DFT-calculated (red) IR spectra of (a) **Ru-0**, (b) **Ru-1**, (c) **Ru-2**, and (d) **Ru-3** (Scale = 0.97 for calculated spectra).

Figure S7 (a) Experimental and (b) calculated UV-vis spectra of Ru-0, Ru-1, Ru-2, and Ru-3.

Figure S8 UV-vis spectra of **Ru-0**⁺, **Ru-1**⁺, **Ru-2**⁺, and **Ru-3**⁺, which were in-situ prepared by the addition of 1.0~2.5 equiv. of CAN to the acetonitrile solution containing each neutral complex.

Figure S9 Frontier MO diagram and UV-vis spectrum of **Ru-2** calculated by TD-DFT/ucam-b3lyp. The HOMO(SOMO)-LUMO band gap is 4.939 eV.

Figure S10 Frontier MO diagram and UV-vis spectrum of **Ru-2**⁺ calculated by TD-DFT/ucam-b3lyp. The HOMO(SOMO)-LUMO band gap is 2.505 eV.

wavelength / nm	oscillator strength (f)	excitation
935.23	0.0913	$94\beta \rightarrow 98\beta, 96\beta \rightarrow 97\beta$
907.66	0.0274	$94\beta \rightarrow 97\beta$, $96\beta \rightarrow 98\beta$
728.56	0.0564	$93\beta \rightarrow 97\beta, 94\beta \rightarrow 98\beta, 96\beta \rightarrow 97\beta$
658.06	0.0607	$93\beta \rightarrow 98\beta, 94\beta \rightarrow 97\beta, 95\beta \rightarrow 97\beta, 96\beta \rightarrow 98\beta$
654.70	0.0815	$93\beta \rightarrow 97\beta, 94\beta \rightarrow 98\beta$
610.11	0.0078	$97\alpha \rightarrow 100\alpha, 98\alpha \rightarrow 99\alpha, 93\beta \rightarrow 98\beta, 94\beta \rightarrow 97\beta$

Table S2 \square Part of the excitation energies and oscillator strengths obtained from the TD-DFT calculation of **Ru-2**⁺.

Figure S11 ECD spectra of (a) **Ru-0**⁺, (b) **Ru-1**⁺, (c) **Ru-2**⁺, and (d) **Ru-3**⁺, which were in-situ oxidized by the addition of 1.0~2.5 equiv. of CAN. Orange and green lines correspond to Λ and Δ isomers, respectively.

Figure S12 Time-dependent absorption changes of oxidized complexes $Ru-0^+$, $Ru-1^+$, $Ru-2^+$, and $Ru-3^+$, which were in-situ prepared by adding an acetonitrile solution of CAN to the acetonitrile solution of each complex. The data of $Ru-0^+$, $Ru-1^+$, and $Ru-3^+$ were previously reported.^[1] The relative absorption intensities at 800 nm (A_t/A_0 , where A_t is the observed absorption at an arbitrary time and A_0 refers to the absorption in the initial state) are plotted against the time after the addition of CAN.

References

[1] J. Yoshida, K. Tateyama, H. Yuge, *Dalton Trans.* **2020**, *49*, 2102–2111.