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1. Organic Synthesis

Discussion

The target 1-hydroxypyrazin-2(1H)-ones 6 were synthesized in two steps from amino acid ethyl esters
following the literature procedures as shown below in Scheme S1.1 Initially, reaction of glycine ethyl
ester hydrochloride 4a with hydroxylamine hydrochloride in alkaline water afforded the known
glycine hydroxamic acid 5a in 64 % yield.'*? Condensation reaction of 5a with 2,3-butanedione
afforded the known 1-hydroxypyrazin-2(1H)-one 6a®2® in 24 % yield (Scheme S1). Unfortunately,
application of this two-step procedure to the synthesis of 6b from alanine ethyl ester 4b failed to give
the desired product, due to the high solubility of the hydroxamic acid 5b in water. We subsequently
modified this procedure by using methanol as the solvent and we were able to obtain 5a from 4a in 56
% vyield (Scheme S1). However, application of this modified procedure to the synthesis of alanine
hydroxamic acid 5b%*2¢® from alanine ethyl ester 4b gave a mixture of 5b and another compound
(presumed to be the corresponding diketopiperazine) in low yield as judged by *H NMR spectroscopy.
Reaction of this mixture with 2,3-butanedione gave an intractable mixture of products from which the
novel 1-hydroxypyrazin-2(1H)-one 6b could not be isolated by chromatography. However, 1-
hydroxypyrazin-2(1H)-ones 6¢ and 6d were successfully obtained by this modified procedure from
the known hydroxamic acids 5¢*2*7 and 5d,2 albeit in only 13 % and 14 % overall yields from 4c and
4d, respectively (Scheme S1). There are some reports of multifunctional hydroxypyridinone metal
chelators containing phenolic antioxidant moieties that show promising efficacy against
neurodegenerative diseases by acting as radical traps as well as metal chelators.® Accordingly, we
synthesized 1-hydroxypyrazin-2(1H)-one 6d that contains a phenol moiety which could provide a
beneficial antioxidant mode of action in addition to iron chelation. Unfortunately, all our attempts to

isolate hydroxamic acids 5e-5g from amino esters 4e—4g met with no success.
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Scheme S1. Synthesis of 1-hydroxypyrazin-2(1H)-ones 6a—6g.

Due to the low yields obtained above and the failure to synthesize certain 1-hydroxypyrazin-2(1H)-
ones 6 by the procedure shown in Scheme S1, we sought a more general synthetic method which could
be applied to the synthesis of a broader range of these compounds. The synthesis of 1-hydroxypyrazin-
2(1H)-ones 6 in 4 steps from N-Boc amino acids via their protected hydroxamic acid benzyl esters was
previously reported.®->19 Inspired by this approach, we explored a new synthesis of 1-hydroxypyrazin-
2(1H)-ones 6 from activated N-Boc amino acid N-hydroxysuccinimide esters 7 as shown below in
Scheme S2.

Reaction of N-Boc-protected N-hydroxysuccinimide esters 7a, 7b, 7c¢, 7e and 7f with O-
benzylhydroxylamine generated the Boc-protected aminohydroxamic acid benzyl esters 8a, 8b, 8c, 8e
and 8f in high yields. Subsequent N-Boc deprotection (TFA in DCM) gave the free aminohydroxamic
acid benzyl esters 9b, 9c, 9e and 9f in excellent yields. However, despite the known formation of 6’a
from 9a (as HCI salt) and 2,3-butanedione reported in the literature,>!! attempted condensation
reactions of compounds 9b, 9c, 9e and 9f with 2,3-butanedione in our hands failed to generate the
desired 1-benzyloxypyrazin-2(1H)-ones 6’b, 6°c, 6’e and 6°f. This synthetic approach was

subsequently abandoned in favour of the approach outlined above in Scheme S1.
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Scheme S2. Attempted synthesis of 1-hydroxypyrazin-2(1H)-ones 6a—6f.

We also explored the reactions of glycine hydroxamic acid 5a with both aromatic and aliphatic a-
ketoaldehydes (glyoxals) as shown below in Scheme S3. Reaction of 5a with phenylglyoxal in
ethanol/water at reflux afforded the novel 1-hydroxypyrazin-2(1H)-one 10a in 30 % yield as a single
regioisomer. Similarly, reaction of 5a with 4-methoxyphenylglyoxal and 4-fluorophenylglyoxal gave
10b and 10c as single regioisomers in 27 % and 24 % yields, respectively. As with 1-hydroxypyrazin-
2(1H)-one 6d, we sought to convert 10b into a 1-hydroxypyrazin-2(1H)-one bearing a phenol moiety
with potential antioxidant activity. Accordingly, deprotection of the methoxy group of 10b with boron
tribromide in DCM afforded the novel 1-hydroxypyrazin-2(1H)-one 10d in 21 % vyield. Reaction of
5a with pyruvaldehyde gave the novel 1-hydroxypyrazin-2(1H)-ones 11a and 12a as a 12:1 mixture
of regioisomers, as judged by 'H NMR spectroscopy (Scheme S3). The major regioisomer was
tentatively assigned as 11a on the basis that the free primary amino group of 5a would preferentially
react with the aldehyde carbonyl group of the glyoxal, rather than the less electrophilic ketone carbonyl
group. These regioisomers proved inseparable by recrystallisation or chromatography, and were
studied without further purification.
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2. Experimental Procedures

Synthesis of N-Boc hydroxamic acid benzyl esters 8a—8f: General procedure

o
0] 0]
H,NOBn
BocHN\)J\ _N — > BocHN\)J\ _0OBn
T 0 DCM, 1t E
R o R
Ta-T7f 8a-8f

To a solution of the appropriate N-Boc amino acid N-hydroxysuccinimide (OSu) ester 7 (1.47 mmol)
in DCM (20 mL) at room temperature was added O-benzylhydroxylamine (1.47 mmol, 1 eq). The
solution was allowed to stir at room temperature for 24 hours. The solvent was evaporated to afford
the crude N-Boc hydroxamic acid benzyl ester 8 as an oil that crystallised contaminated with N-

hydroxysuccinimide. This mixture was used in the next step without further purification.

N-Boc glycine hydroxamic acid benzyl ester 8a®>! §4(399.8 MHz, CDCls, MesSi) 1.40 (9H, s,
(CHz3)3), 3.67 (2H, s, CH2NHBoc), 4.82 (1H, br s, NH), 4.88 (2H, s, OCH2Ph), 5.25 (1H, br s, NHBoc),
7.36 (5H, s, ArH).

N-Boc alanine hydroxamic acid benzyl ester 8b*! §1(399.8 MHz, CDCls, Me4Si) 1.28 (3H, d, J 6.8,
CHsCH), 1.38 (9H, s, (CHa)s), 4.05 (1H, app t, J 6.8, CHsCH), 4.86 (2H, s, OCHPh), 5.29 (1H, d, J
6.4, NHBoC), 7.27-7.36 (5H, m, ArH).

N-Boc phenylalanine hydroxamic acid benzyl ester 8c¢2* §14(399.8 MHz, CDCls, Me4Si) 1.36 (9H,
s, (CHs)3), 2.96-3.06 (2H, m, CHCHPh), 4.20 (1H, g, J 7.6, CHNHBoc), 4.62-4.84 (2H, m, OCH-Ph),
5.26 (1H, d, J 7.6, CHNHBoC), 7.17-7.36 (10H, m, ArH).

N-Boc valine hydroxamic acid benzyl ester 8e'#13 §,4(399.8 MHz, CDCls, Me4Si) 0.88 (3H, d, J 6.4,
(CHs)2CH), 0.90 (3H, d, J 6.4, (CHs)2CH), 1.39 (9H, s, (CHs)s), 1.96-2.02 (LH, m, (CHs)2CH), 3.70
(1H, t, J 8.4, CHNHBoc), 4.88 (2H, s, OCH.Ph), 5.28 (1H, d, J 8.4, CHNHBoc), 7.28-7.37 (5H, m,
ArH), 9.45 (1H, br s, NHOCH:Ph),

N-Boc leucine hydroxamic acid benzyl ester 8f'! 51(399.8 MHz, CDCls, MesSi) 0.85-0.87 (6H, m,
(CH3)2CH), 1.39 (9H, s, (CHa)s), 1.41-1.47 (1H, m, (CH3)2CH), 1.54-1.60 (2H, m, (CH2CH(CHa)z),
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3.97 (1H, g, J 8.0, CHNHBoc), 4.88 (2H, s, OCH2Ph), 5.17 (1H, d, J 8.0, CHNHBoc), 7.24-7.37 (5H,
m, ArH), 9.45 (1H, br s, NHOCH_Ph).

Synthesis of hydroxamic acid benzyl ester TFA salts 9b—9f: General procedure

)
TFA +
BocHN\)J\ OBn — s H3N _0Bn
R R
8b-8f 9b-9f

The appropriate crude N-Boc hydroxamic acid benzyl ester 8 (1.47 mmol) was dissolved in DCM (10
mL) and trifluoroacetic acid (10 mL) was added. The solution was allowed to stir at room temperature
for 24 hours. The solvents were evaporated to afford the crude TFA salt 9 as a clear oil. The oil was
triturated with diethyl ether (10 mL) and the resulting white solid was filtered and washed with diethyl
ether (10 mL) and allowed to dry in air to afford the pure TFA salt 9 as a white solid.

Alanine hydroxamic acid benzyl ester TFA salt 9b*! Obtained from 7b in 87% overall yield.
51(399.8 MHz, DMSO-ds) 1.24 (3H, d, J 7.2, CHsCH), 3.64 (1H, br s, CHsCH), 4.77 (1H, d, J 11.2,
OCH:Ph), 4.81 (1H, d, J 11.2, OCH2Ph), 7.34-7.38 (5H, m, ArH).

Phenylalanine hydroxamic acid benzyl ester TFA salt 9¢*>® Obtained from 7c in 78% overall yield.
0H(399.8 MHz, D.0O) 2.91 (1H, dd, J 14.0 and 8.4, CHCHzPh), 2.99 (1H, dd, J 14.0 and 6.8,
CHCHzPh), 3.82 (1H, dd, J 8.4 and 6.8, CHCH2Ph), 4.41 (1H, d, J 11.0, OCH2Ph), 4.59 (1H, d, J 11.0,
OCH2Ph), 7.06-7.13 (4H, m, ArH), 7.20-7.26 (6H, m, ArH).

Valine hydroxamic acid benzyl ester TFA salt 9e’2* Obtained from 7e in 91% overall yield.
5H(399.8 MHz, D,0) 0.69 (3H, d, J 6.4, (CHs)2)CH), 0.73 (3H, d, J 6.4, (CHs)2)CH), 1.88 (1H, sp, J
6.4, (CH3)2CH), 3.38 (1H, d, J 6.4, CHNHs"), 4.75 (1H, d, J 11.2, OCH:Ph), 4.80 (1H, d, J 11.2,
OCH,Ph), 7.27-7.32 (5H, m, ArH).

Leucine hydroxamic acid benzyl ester TFA salt 9f'! Obtained from 7f in 84% overall yield. 51(399.8
MHz, D20) 0.65 (3H, d, J 6.0, (CHs)2CH), 0.67 (3H, d, J 6.0, (CHs),CH), 1.01-1.10 (1H, m,
(CH3)2CH), 1.37 (2H, t, J 7.2, CH2CH(CHa)2), 3.56 (1H, t, J 7.2, CHNH3"), 4.74 (1H, d, J 11.2,
OCH,Ph), 4.82 (1H, d, J 11.2, OCH,Ph), 7.25-7.34 (5H, m, ArH).
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3. NMR Spectra

Glycine hydroxamic acid 5a




Alanine hydroxamic acid 5b
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Tyrosine hydroxamic acid 5d
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1-Hydroxy-5,6-dimethylpyrazin-2(1H)-one 6a
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1-Hydroxy-3-benzyl-5,6-dimethylpyrazin-2(1H)-one 6¢
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1-Hydroxy-3-(4-hydroxybenzyl)-5,6-dimethylpyrazin-2(1H)-one 6d
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N-Boc glycine hydroxamic acid benzyl ester 8a
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N-Boc alanine hydroxamic acid benzyl ester 8b
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N-Boc phenylalanine hydroxamic acid benzyl ester 8c
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N-Boc valine hydroxamic acid benzyl ester 8e
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N-Boc leucine hydroxamic acid benzyl ester 8f
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Alanine hydroxamic acid benzyl ester TFA salt 9b
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Phenylalanine hydroxamic acid benzyl ester TFA salt 9c
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Valine hydroxamic acid benzyl ester TFA salt 9e
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Leucine hydroxamic acid benzyl ester TFA salt 9f
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1-Hydroxy-6-phenylpyrazin-2(1H)-one 10a
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1-Hydroxy-6-(4-methoxyphenyl)-pyrazin-2(1H)-one 10b
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1-Hydroxy-6-(4-fluorophenyl)-pyrazin-2(1H)-one 10c
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1-Hydroxy-6-(4-hydroxyphenyl)-pyrazin-2(1H)-one 10d
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1-Hydroxy-6-methylpyrazin-2(1H)-one 11a and 1-Hydroxy-5-methylpyrazin-2(1H)-one 12a
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4. Mass Spectra

1-Hydroxy-3-(4-hydroxybenzyl)-5,6-dimethylpyrazin-2(1H)-one 6d
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1-Hydroxy-6-phenylpyrazin-2(1H)-one 10a
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1-Hydroxy-6-(4-methoxyphenyl)-pyrazin-2(1H)-one 10b
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1-Hydroxy-6-(4-fluorophenyl)-pyrazin-2(1H)-one 10c
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1-Hydroxy-6-(4-hydroxyphenyl)-pyrazin-2(1H)-one 10d
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Type: FTMS + p

1-Hydroxy-6-methylpyrazin-2(1H)-one 11a and 1-Hydroxy-5-methylpyrazin-2(1H)-one 12a
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5. Determination of pKa Values of the Ligands and Stability Constants of the

Complexes

Protonation studies with ligand 11a
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Figure S1. Spectrophotometric titrations vs pH of ligand 11a between (A) —0.5 < pH < 2.08 (batch

titration, [11a] = 2.57 x 10* M) and (B) 2.61 < pH < 10.17 (direct titration, [11a] = 2.55 x 107* M).

(C) Electronic spectra and (D) distribution curves ([11a] = 2.55 x 10~ M) of the protonated species
of ligand 11a. Solvent: H20O, I = 0.1 M (NaClO4), T=25.0 °C.
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Protonation studies with ligand 10a in water
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Figure S2. Spectrophotometric titrations vs pH of ligand 10a between (A) —0.75 < pH < 2 (batch
titration, [10a] = 1.95 x 10~* M) and (B) 2.12 < pH < 11.79 (direct titration, [10a] = 1.02 x 10~* M).
(C) Electronic spectra and (D) distribution curves ([10a] = 1.95 x 10~ M) of the protonated species

of ligand 10a. Solvent: H20O, 1 =0.1 M (NaClOg), T=25.0 °C.

S56



Protonation studies with ligand 10a in MeOH/H20 (80/20 w/w)
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Figure S3. Spectrophotometric titrations vs pH of ligand 10a between (A) —0.37 < pH < 0.63 (batch

titration, [10a] = 1.02 x 10~* M) and (B) 2.43 < pH < 11.88 (direct titration, [10a] = 1.01 x 107 M).

(C) Electronic spectra and (D) distribution curves ([10a] = 1.02 x 10~ M) of the protonated species
of ligand 10a. Solvent: MeOH/H20 (80/20 w/w), I = 0.1 M (NaClO4), T=25.0 °C.
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Protonation studies with ligand 6d
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Figure S4. Spectrophotometric titrations vs pH of ligand 6d between (A) —0.36 < pH < 2.36 (batch
titration, [6d] = 3.0 x 107* M) and (B) 1.78 < pH < 11.47 (direct titration, [6d] = 9.98 x 107> M). (C)
Electronic spectra and (D) distribution curves ([6d] = 3.0 x 10™* M) of the protonated species of
ligand 6d. Solvent: MeOH/H20 (80/20 w/w), 1 = 0.1 M (NaClO4), T=25.0 °C.
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Protonation studies with ligand 6¢
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Figure S5. Spectrophotometric titrations vs pH of ligand 6¢ between (A) —0.04 < pH < 2.11 (batch
titration, [6¢] = 3.0 x 10* M) and (B) 2.49 < pH < 11.74 (direct titration, [6¢] = 9.98 x 107> M). (C)
Electronic spectra and (D) distribution curves ([6¢] = 1.54 x 10~* M) of the protonated species of
ligand 6¢. Solvent: MeOH/H20 (80/20 w/w), I = 0.1 M (NaClQOy4), T= 25.0 °C.
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Fe3* complexation studies with ligand 6a
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Figure S6. Spectrophotometric titration vs pH of Fe** complexes of ligand 6a between (A) —0.5 <
pH < 1.25 (batch titration, [6a] = 3.78 x 107* M, [Fe®*] = 1.26 x 10™* M) and (B) 1.97 < pH < 12.04
(direct titration, [6a] = 2.38 x 10~* M, [Fe3*] = 7.14 x 10> M). (C) Electronic spectra and (D)
distribution curves ([6a] = 2.38 x 10™* M, [Fe**] = 7.14 x 103 M) of the Fe*" complexes of 6a.
Solvent: H20, 1 =0.1 M (NaClOgy), T=25.0 °C.
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Fe3* complexation studies with ligand 10a
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Figure S7. Spectrophotometric titration vs pH of Fe** complexes of ligand 10a between (A) —0.36 <
pH < 1.80 (batch titration, [10a] = 1.02 x 10 M, [Fe*"] = 3.20 x 10> M) and (B) 2.34 < pH < 8.03
(direct titration, [10a] = 1.02 x 1073 M, [Fe3*] = 3.12 x 10™* M). (C) Electronic spectra and (D)
distribution curves ([10a] = 1.02 x 10™* M, [Fe**] = 3.20 x 1073 M) of the Fe** complexes of 10a.
Solvent: MeOH/H20 (80/20 w/w), 1 =0.1 M (NaClQa), T= 25.0 °C.
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Fe3* complexation studies with ligand 6d
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Figure S8. Spectrophotometric titration vs pH of Fe** complexes of ligand 6d between (A) —0.36 <
pH < 2.36 (batch titration, [6d] = 3.0 x 107 M, [Fe**] =8.0 x 1075 M) and (B) 1.97 <pH < 12.04
(direct titration, [6d] = 1.04 x 10 M, [Fe*"] = 3.23 x 107> M). (C) Electronic spectra and (D)
distribution curves ([6d] = 1.04 x 1074 M, [Fe3*] = 3.23 x 10> M) of the Fe** complexes of 6d.
Solvent: MeOH/H20 (80/20 w/w), 1 =0.1 M (NaClQa), T= 25.0 °C.
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Fe3* complexation studies with ligand 6¢
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Figure S9. Spectrophotometric titration vs pH of Fe** complexes of ligand 6¢ between (A) —0.36 <
pH < 1.83 (batch titration, [6¢] = 3.0 x 10* M, [Fe3*]1 =9.38 x 1075 M) and (B) 1.97 <pH < 12.04
(direct titration, [6¢] = 1.02 x 107 M, [Fe®*"] = 3.12 x 107> M). (C) Electronic spectra and (D)
distribution curves ([6¢] = 1.02 x 10* M, [Fe®**] = 3.12 x 10> M) of the Fe3* complexes of 6c¢.
Solvent: MeOH/H20 (80/20 w/w), 1 =0.1 M (NaClQa), T= 25.0 °C.
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6. BBB Penetration Scores

Table S1. Predicted BBB score of compound 6a.

6a
Property Value | To
Number of Aromatic Rings (Aro_R) 1 0.82
Number of Heavy Atoms (HA) 10 |0.65
Molecular Weight (MW) 140.14
Number of Hydrogen Bond Acceptor (HBA) 3
Number of Hydrogen Bond Donor (HBD) 1

MWHBN [MWHBN = (MW"(-0.5)*HBN), 0.34 |0.71
where HBN=HBA+HBD]

Topological Polar Surface Area(TPSA) 55.12 | 0.62
pKa 458 |0.23
BBB SCORE 3.88
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Table S2. Predicted BBB score of compound 6c¢.

6c
Property Value | To
Number of Aromatic Rings (Aro_R) 2 1.00
Number of Heavy Atoms (HA) 17 0.98
Molecular Weight (MW) 230.26
Number of Hydrogen Bond Acceptor (HBA) 3
Number of Hydrogen Bond Donor (HBD) 1
MWHBN [MWHBN = (MWA(-0.5)*HBN), 0.26 |0.93
where HBN=HBA+HBD]
Topological Polar Surface Area(TPSA) 65.42 | 0.54
pKa 5.53 |0.47
BBB SCORE 4.70
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Table S3. Predicted BBB score of compound 6d.

6d
Property Value | To
Number of Aromatic Rings (Aro_R) 2 1.00
Number of Heavy Atoms (HA) 18 0.99
Molecular Weight (MW) 246.26
Number of Hydrogen Bond Acceptor (HBA) 4
Number of Hydrogen Bond Donor (HBD) 2
MWHBN [MWHBN = (MWA(-0.5)*HBN), 0.38 |0.55
where HBN=HBA+HBD]
Topological Polar Surface Area(TPSA) 75.35 | 0.47
pKa 5.96 | 0.58
BBB SCORE 4.05
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Table S4. Predicted BBB score of compound 10a.

10a
Property Value | To
Number of Aromatic Rings (Aro_R) 2 1.00
Number of Heavy Atoms (HA) 14 1 0.89
Molecular Weight (MW) 188.18
Number of Hydrogen Bond Acceptor (HBA) 3
Number of Hydrogen Bond Donor (HBD) 1
MWHBN [MWHBN = (MWA(-0.5)*HBN), 0.29 |0.87
where HBN=HBA+HBD]
Topological Polar Surface Area(TPSA) 51.48 | 0.64
pKa 3.18 |0.00
BBB SCORE 4.47
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Table S5. Predicted BBB score of compound 10d.

10d
Property Value | To
Number of Aromatic Rings (Aro_R) 2 1.00
Number of Heavy Atoms (HA) 15 0.93
Molecular Weight (MW) 204.18
Number of Hydrogen Bond Acceptor (HBA) 4
Number of Hydrogen Bond Donor (HBD) 2
MWHBN [MWHBN = (MWA(-0.5)*HBN), 0.42 |0.40
where HBN=HBA+HBD]
Topological Polar Surface Area(TPSA) 53.5 | 0.63
pKa 4 0.11
BBB SCORE 3.83
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Table S6. Predicted BBB score of compound 11a.

11a
Property Value | To
Number of Aromatic Rings (Aro_R) 1 0.82
Number of Heavy Atoms (HA) 9 0.56
Molecular Weight (MW) 126.11
Number of Hydrogen Bond Acceptor (HBA) 3
Number of Hydrogen Bond Donor (HBD) 1
MWHBN [MWHBN = (MWA(-0.5)*HBN), 0.36 | 0.65
where HBN=HBA+HBD]
Topological Polar Surface Area(TPSA) 31.01 | 0.78
pKa 3.98 [0.11
BBB SCORE 3.97
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Table S7. Predicted BBB score of compound 2.

2
Property Value | To
Number of Aromatic Rings (Aro_R) 1 0.82
Number of Heavy Atoms (HA) 10 0.65
Molecular Weight (MW) 141.12
Number of Hydrogen Bond Acceptor (HBA) 3
Number of Hydrogen Bond Donor (HBD) 2
MWHBN [MWHBN = (MWA(-0.5)*HBN), 0.42 |0.39
where HBN=HBA+HBD]
Topological Polar Surface Area(TPSA) 34.37 | 0.76
pKa 6.02 | 0.60
BBB SCORE 3.87
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Table S8. Predicted BBB score of compound 3.

3
Property Value | To
Number of Aromatic Rings (Aro_R) 1 0.82
Number of Heavy Atoms (HA) 11 |0.72
Molecular Weight (MW) 155.11
Number of Hydrogen Bond Acceptor (HBA) 4
Number of Hydrogen Bond Donor (HBD) 2
MWHBN [MWHBN = (MWA(-0.5)*HBN), 0.48 |0.00
where HBN=HBA+HBD]
Topological Polar Surface Area(TPSA) 79.53 | 0.44
pKa 3.7 |0.06
BBB SCORE 2.46
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Table S9. Predicted BBB score of DFP 1.

DFP 1
Property Value | To
Number of Aromatic Rings (Aro_R) 1 0.82
Number of Heavy Atoms (HA) 10 0.65
Molecular Weight (MW) 139.15
Number of Hydrogen Bond Acceptor (HBA) 2
Number of Hydrogen Bond Donor (HBD) 1
MWHBN [MWHBN = (MWA(-0.5)*HBN), 0.25 |0.95
where HBN=HBA+HBD]
Topological Polar Surface Area(TPSA) 38.95 | 0.73
pKa 3.68 | 0.06
BBB SCORE 4.37
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Table S10. Comparison of predicted BBB scores with percentage neuronal rescue from 6-OHDA

neurotoxicity at 100 uM dose of the compound.

Compound BBB Score % 6-OHDA Rescue
(at 100 uM)

6a 3.88 100
6¢c 4.70 89
6d 4.05 64
10a 4.47 63
10d 3.83 76
1la 3.97 60
DFP 1 4.37 117
2 3.87 93

3 2.46 84
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6-OHDA Rescue (at 100 uM) as a function of BBB Score
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Figure S10. Plot of predicted BBB scores versus percentage neuronal rescue from 6-OHDA
neurotoxicity at 100 uM dose of the compound, showing no clear correlation between the two
properties (e = 6a—6d, 10a, 10d and 11a, m =2 and 3, A = DFP 1).
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7. DPPH Antioxidant Assay
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Figure S11. Percentage inhibition of the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical by ligand 6a
after 24 hours (24h) and 48 hours (48h).
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Figure S12. Percentage inhibition of the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical by ligand
11a after 1 hour (1h), 24 hours (24h) and 48 hours (48h).

S75



100 -

% of inhibition

50 -

&® &
Al
&
A
. |
4 [ ]
W 1h15
-, n® +24h
&
A 48h
|
u 72h
n T T T T T 1
0 0.02 0.04 0.06 0.08 0.1 0.12
[10a] mg/mL

Figure S13. Percentage inhibition of the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical by ligand
10a after 1 hour (1h), 24 hours (24h) and 48 hours (48h).

100 -

A
A *
*
S A
E=
%50 1 .
;& A A 48h
+ 24h
A Ao
A *
*
0 ‘. T T T T T 1
0 0.02 0.04 0.06 0.08 0.1 0.12
[6d] (mg/mL)

Figure S14. Percentage inhibition of the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical by ligand 6d
after 24 hours (24h) and 48 hours (48h).
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Figure S15. Percentage inhibition of the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical by ligand 6¢
after 1 hour (1h), 24 hours (24h), 48 hours (48h) and 72 hours (72h).
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8. Trolox Equivalent Antioxidant Capacity (TEAC) Assay
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Figure S16. Percentage of ABTS inhibition (TEAC) by ligand 6a (ABTS = 2,2"-azinobis-(3-

ethylbenzothiazoline-6-sulfonic acid)).
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Figure S17. Percentage of ABTS inhibition (TEAC) by ligand 11a (ABTS = 2,2'-azinobis-(3-

ethylbenzothiazoline-6-sulfonic acid)).
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Figure S18. Percentage of ABTS inhibition (TEAC) by ligand 10a (ABTS = 2,2'-azinobis-(3-

ethylbenzothiazoline-6-sulfonic acid)).

50 -

45 -

40 -

35 -
S 30 -
=
2 25 - & t1 Y=47042x+4.0069
c
£, R?=0.9944
e 20

15 - B 13 y=63279x+5.855

2 _
10 - R?=0.9859
B t6
5 -
0 T T T T T 1
0 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006
[6d] (M)

Figure S19. Percentage of ABTS inhibition (TEAC) by ligand 6d (ABTS = 2,2'-azinobis-(3-

ethylbenzothiazoline-6-sulfonic acid)).
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Figure S20. Percentage of ABTS inhibition (TEAC) by ligand 6¢c (ABTS = 2,2'-azinobis-(3-
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ethylbenzothiazoline-6-sulfonic acid)).
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Figure S21. Percentage of ABTS inhibition (TEAC) by Trolox (ABTS = 2,2'-azinobis-(3-

ethylbenzothiazoline-6-sulfonic acid)).
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9. Neuroprotection against 6-OHDA Neurotoxicity
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Figure S22. Comparison of the percentage neuroprotection against 6-hydroxydopamine (6-OHDA)
neurotoxicity in SH-SY5Y neuroblastoma cells by compounds 6a, 6¢, 2, 3 and DFP 1 (at 100 uM

compound dose).

S81



10. References

1. (@) S. R. Safir and J. H. Williams, J. Org. Chem., 1952, 17, 1298-1301; (b) K. Tanaka, K. Matsuo,
A. Nakanishi, Y. Kataoka, K. Takase and S. Otsuki, Chem. Pharm. Bull., 1988, 36, 2323-2330.

2. (a) L. W. Jones and M. C. Sneed, J. Am. Chem. Soc., 1917, 39, 668-674; (b) K. G. Cunningham, G.
T. Newbold, F. S. Spring and J. Stark, J. Chem. Soc., 1949, 2091-2094; (c) A. Cordi, J.-M. Lacoste,
V. Audinot and M. Millan, Bioorg. Med. Chem. Lett., 1999, 9, 1409-1414.

3. A. Katoh, J. Ohkanda, Y. Itoh and K. Mitsuhashi, Chem. Lett., 1992, 2009-2012.

4. F. Gutierrez, C. Tedeschi, L. Maron, J.-P. Daudey, R. Poteau, J. Azema, P. Tisnes and C. Picard,
Dalton Trans., 2004, 1334-1347.

5. J. Ohkanda, T. Tokumitsu, K. Mitsuhashi and A. Katoh, Bull. Chem. Soc. Jpn., 1993, 66, 841-847.
6. (a) M. Frankel, G. Zvilichovsky and Y. Knobler, J. Chem. Soc., 1964, 3931-3940; (b) L. Marchio,
N. Marchetti, C. Atzeri, V. Borghesani, M. Remelli and M. Tegoni, Dalton Trans., 2015, 44, 3237—
3250.

7. (@) M. Tegoni, M. Furlotti, M. Tropiano, C.-S. Lim and V. L. Pecoraro, Inorg. Chem., 2010, 49,
5190-5201; (b) C. M. Zaleski, C.-S. Lim, A. D. Cutland-Van Noord, J. W. Kampf and V. L. Pecoraro,
Inorg. Chem., 2011, 50, 7707-7717; (c) J. Jankolovits, C.-S. Lim, G. Mezei, J. W. Kampf and V. L.
Pecoraro, Inorg. Chem., 2012, 51, 4527-4538.

8. E. E. Smissman and V. D. Warner, J. Med. Chem., 1972, 15, 681-682.

9. (a) D. Bebbington, N. J. T. Monck, S. Gaur, A. M. Palmer, K. Benwell, V. Harvey, C. S. Malcolm
and R. H. P. Porter, J. Med. Chem., 2000, 43, 2779-2782; (b) D. Bebbington, C. E. Dawson, S. Gaur
and J. Spencer, Bioorg. Med. Chem. Lett., 2002, 12, 3297-3300; (c) H. Schugar, D. E. Green, M. L.
Bowen, L. E. Scott, T. Storr, K. Béhmerle, F. Thomas, D. D. Allen, P. R. Lockman, M. Merkel, K. H.
Thompson and C. Orvig, Angew. Chem. Int. Ed., 2007, 46, 1716-1718; (d) D. E. Green, M. L. Bowen,
L. E. Scott, T. Storr, M. Merkel, K. Béhmerle, K. H. Thompson, B. O. Patrick, H. J. Schugar and C.
Orvig, Dalton Trans., 2010, 39, 1604-1615.

10. (a) J. Ohkanda and A. Katoh, J. Org. Chem., 1995, 60, 1583-1589; (b) J. Ohkanda and A. Katoh,
Tetrahedron, 1995, 51, 12995-13002; (c) J. Ohkanda and A. Katoh, Chem. Lett., 1996, 423-424.

11. A.-H. Mai, S. Pawar and W. M. De Borggraeve, Tetrahedron Lett., 2014, 55, 4664—-4666.

12. A. Volonterio, P. Bravo and M. Zanda, Tetrahedron Lett., 2001, 42, 3141-3144.

13. A. Volonterio, S. Bellosta, P. Bravo, M. Canavesi, E. Corradi, S. V. Meille, M. Monetti, N.
Moussier and M. Zanda, Eur. J. Org. Chem., 2002, 428-438.

S82



