Supporting Information

A Gd-based Borate-Carbonate Framework, Exhibiting a Large Magnetocaloric

Effect at Low Magnetic Field

Bo-Liang Liu, Qiao-Fei Xu, La-Sheng Long,* and Lan-Sun Zheng

Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.

Experimental Section

Materials and Physical Measurements.

All materials and reagents were commercially available and used without further purification.

Single crystal data of **1** were collected using an Agilent Technologies Super Nova four-circle diffractometer with monochromatic Cu K α radiation ($\lambda = 1.54184$ Å). Data reduction and absorption correction were applied by using the multi-scan program. The structures were determined and refined using full-matrix least-squares based on F^2 with SHELXS-97 and SHELXL-97¹ within Olex2.² CCDC number is 2073758 for compound **1**. Crystal data and refinement details are presented in Table S3. Selected bond distances and bond angles are listed in Table S4. The data can be obtained free of charge from the Cambridge Crystallographic Data Centre.

Powder X-ray diffraction data (PXRD) was collected on a Rigaku Ultima IV powder X-ray diffractometer (Cu K α , $\lambda = 1.54184$ Å) in the 2θ range of 10-70° at 300 K. Thermogravimetric analysis (TGA) curve was conducted on an SDT_Q600 thermal analyzer at a rate of 10 °C per minute up to 800 °C under a constant nitrogen gas. Infrared spectra were recorded on a Nicolet iS50 FT-IR spectrophotometer with pressed KBr pellets. Magnetic measurement was carried out using a Quantum Design MPMS superconducting quantum interference device (SQUID).

Synthesis of GdB(OH)₄CO₃(1)

Single crystal of **1** was synthesized by a mixture of $Gd(NO_3)_3 \cdot 6H_2O$ (0.451 g, 1.0 mmol), boric acid (0.247 g, 4 mmol) and ammonium carbonate (0.144 g, 1.5 mmol) dissolved in 10 mL deionized water. The resulting solution was stirred for 30 min before transferred into a Teflonlined autoclave 200 °C for 3 days and cooled down to room temperature at a rate of 3 °C h⁻¹. Colorless crystals were obtained in 50% yield based on Gd^{3+} .

Fig. S1. PXRD curve for 1.

The PXRD patterns are consistent with the simulated ones based on the single-crystal structure determinations, suggesting the phase purity of **1**.

Fig. S2. TGA curve of 1.

The TGA curve of **1** was carried out under N_2 atmosphere. With temperature rising, two obvious endothermic steps are observed. The first step is attributed to the loss of two H₂O from tetrahydroxyborates, and the second is ascribed to the departure of CO₂ from carbonates. By the end of 800 °C, the weight loss is up to 26.6 %, which matches the theoretical value 27.0 % calculated for the weight loss of two H₂O and one CO₂, indicating that the residue is GdBO₃ at 800 °C.

Fig. S3. IR spectra in 4000-530 cm⁻¹ for 1

Fig. S4. The χ_m^{-1} vs. T plot of 1 in the temperature range of 2–300 K. The red solid line is the best-fit according to the Curie-Weiss law. Inserted: enlarged figure in the temperature range from 2 K to 20 K with error bar. The positive intercept of y axial suggests the antiferromagnetic coupling interaction in 1.

Atom	bond	R _{ij}	R ₀	S _{ij}
Gd-O 2.500 B-O 1.476 Tot Assign	Gd–O	2.500	2.031	0.282
	B–O	1.476	1.371	0.753
	Total		1.035	
	Assignmen	t	OH-	
02	Gd–O	2.487	2.031	0.292
	B–O	1.478	1.371	0.749
02		Total		1.041
		Assignmen	t	OH-

Table S1. BVS calculations for oxygen atoms in tetrahydroxyborate.

The bond valence sum (BVS)³ analysis was used to determine the oxidation states of oxygen atoms in compound **1**. The calculation formula is $S_{ij} = \exp[(R_0 - R_{ij})/b]$, in which S_{ij} is the valence of the individual bond, R_{ij} is the observed bond length, R_0 is a constant depended upon the bonded elements, and *b* is a constant of 0.37. As shown in **Table S1**, the total BVS values of O atoms are very close to the state of +1, for which we identify the states of both O atoms are assigned to hydroxyl groups.

	Gd	
DP-10 (<i>D</i> _{8h})	33.433	
EPY-10 (<i>C</i> _{9v})	24.528	
OBPY-10 (<i>D</i> _{8<i>h</i>})	15.660	
PPR-10 (<i>D</i> _{5<i>h</i>})	12.731	
PAPR-10 (<i>D</i> _{5d})	13.562	
JBCCU-10 (D _{4h})	10.557	
JBCSAPR-10 (D _{4d})	5.142	
JMBIC-10 (<i>C</i> _{2ν})	9.328	
JATDI-10 (<i>C</i> _{3v})	17.680	
JSPC-10 (<i>C</i> _{2v})	2.539	
SDD-10 (<i>D</i> ₂)	4.835	
TD-10 (<i>C</i> ₂)	3.941	
HD-10 (D _{4h})	9.320	

Table S2. The Continuous Shape Measurements $(CShM)^4$ of 1.

DP-10 = Decagon; EPY-10 = Enneagonal pyramid; OBPY-10 = Octagonal bipyramid; PPR-10 = Pentagonal prism; PAPR-10 = Pentagonal antiprism; JBCCU-10 = Bicapped cube; JBCSAPR-10 = Bicapped square antiprism; JMBIC-10 = Metabidiminished icosahedron; JATDI-10 = Augmented tridiminished icosahedron; JSPC-10 = Sphenocorona; SDD-10 = Staggered Dodecahedron; TD-10 = Tetradecahedron; HD-10 = Hexadecahedron.

Compound	1	
Formula	CH ₄ BGdO ₇	
Formula weight	296.1	
Temperature/K	100	
Crystal system	orthorhombic	
Space group	Pbcm	
a/Å	6.1685 (4)	
b/Å	8.8840 (6)	
c/Å	9.1876 (7)	
V/Å ³	503.49 (6)	
Ζ	4	
$D_{\rm c}/{ m g~cm^{-3}}$	3.906	
μ/mm^{-1}	85.22	
$ heta/^{\mathrm{o}}$	7.7780-72.7490	
Observed reflections	1745	
<i>F</i> (000)	540	
GOOF	1.154	
$R_1[I > 2\sigma(I)]^a$	0.0467	
wR_2 (All data) ^b	0.1426	

 Table S3. Crystal data for 1.

^a $R_1 = \sum ||Fo| - |Fc|| / \sum |Fo|$ ^b $wR_2 = \{\sum [w(Fo^2 - Fc^2)^2] / \sum [w(Fo^2)^2] \}^{1/2}$

Gd1—O2 ⁱ	2.487 (4)	Gd1—O3 ^v	2.851 (6)
Gd1—O2 ⁱⁱ	2.487 (4)	Gd1—O4 ^{iv}	2.418 (2)
Gd1—O1	2.500 (4)	Gd1—O4 ^v	2.418 (2)
Gd1—O1 ⁱⁱⁱ	2.500 (4)	O2—B1	1.478 (6)
Gd1—O3	2.341 (5)	O1—B1	1.476 (6)
Gd1—O3 ^{iv}	2.851 (6)	O3—C1	1.259 (7)
Gd1—O3 ⁱⁱⁱ	2.341 (5)	O4—C1	1.287 (11)
Gd1-O3-Gd1 ^{iv}	117.3(2)	$Gd1^{iv}$ -O4-Gd 1^{vi}	143.5(3)

Table S4. Selected bond distances (Å) and bond angles (°) of 1.

Symmetry codes: (i) x+1, y, z; (ii) x+1, -y+1/2, -z-1; (iii) x, -y+1/2, -z-1; (iv) -x-2, -y+1, -z-1; (v) -x-2, y-1/2, z; (vi) -x-2, -y+1, z-1/2

Reference

- (1) G. M. Sheldrick, Acta Cryst., 2015, 71, 3-8.
- (2) O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Cryst., 2009, 42, 339–341.
- (3) I. D. Brown and D. Altermatt, Acta Cryst. B, 1985, 41, 244–247.
- (4) S. Alvarez, P. Alemany, D. Casanova, J. Cirera, M. Llunell and D. Avnir, *Coord. Chem. Rev.*, 2005, **249**, 1693–1708.