Electronic Supporting Information

Contents

1.	Syntheses					
	1.1.	Synthesis of cyclo-{P ₄ ^t Bu ₃ (SiMe ₃)}	1			
2.	Crys	tallography	2			
3.	3. NMR Spectra					
	3.1.	$[Li{cyclo-(P_4^tBu_3)}(thf)(tmeda)] (1)$	4			
	3.2.	${cyclo-(P_4^tBu_3)}_2$ (2)	7			
	3.3.	{ <i>cyclo</i> -(P ₄ ^t Bu ₃)} ₂ P ^t Bu (3)	8			
	3.4.	${cyclo-(P_4^tBu_3)}_2CH_2$ (4)	9			
	3.5.	Bi{ <i>cyclo</i> -(P ₄ ^t Bu ₃)} ₃ (5)	12			
	3.6.	$Sb{cyclo-(P_4^tBu_3)}_3$ (6)	16			
	3.7.	As{ $cyclo-(P_4^tBu_3)$ } (7)	18			
	3.8.	As{ $cyclo-(P_4^tBu_3)$ } ₂ Cl (8)	20			
	3.9.	$cyclo-\{P_4^tBu_3(SiMe_3)\}$	23			
4.	Refe	rences	24			

1. Syntheses

1.1. Synthesis of *cyclo*-{P₄^tBu₃(SiMe₃)}

257.6 mg **1** (0.525 mmol) were suspended in 3 ml Et₂O and 0.08 ml SiClMe₃ (0.629 mmol, 1.20 equiv.) were added. All volatiles were removed under reduced pressure and the residue was dried *in vacuo* at 40 °C for 10 min. The residue was extracted with 10 ml *n*-hexane. Removing the solvent under reduced pressure yielded 188.3 mg (0.511 mmol, 97% yield, spectroscopic purity 95%). Literature reports a synthesis with 18% yield.¹

2. Crystallography

Compound	1	3	4	5	6†	7	8
Empirical formula	$C_{22}H_{51}LiN_2OP_4$	$C_{28}H_{63}P_{9}$	$C_{25}H_{56}P_8$	C ₃₆ H ₈₁ BiP ₁₂	$C_{36}H_{81}P_{12}Sb$	$C_{36}H_{81}AsP_{12}$	$C_{24}H_{54}AsCIP_8$
Formula weight	490.46	678.51	604.45	1094.62	1007.39	960.56	700.80
Temperature [K]	130(2)	130(2)	240(2)	130(2)	130(2)	130(2)	130(2)
Wavelength [pm]	71.073	71.073	71.073	71.073	71.073	71.073	71.073
Crystal system	Monoclinic	Triclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Triclinic
Space group	<i>P</i> 2 ₁	PĪ	<i>P</i> 2 ₁ /n	<i>P</i> 2 ₁ /c	<i>P</i> 2 ₁ /c	<i>P</i> 2 ₁ /c	PĪ
Unit cell							
<i>a</i> [pm]	887.51(2)	982.83(2)	1300.38(3)	1409.55(2)	1401.71(2)	1383.40(2)	903.35(4)
<i>b</i> [pm]	1546.65(3)	1348.69(3)	1821.42(4)	2388.32(3)	2376.66(3)	2348.73(2)	1333.30(4)
<i>c</i> [pm]	1119.23(3)	1516.21(3)	1623.94(4)	1619.85(2)	1627.34(2)	1642.33(2)	1658.76(6)
α [deg]	90	84.231(2)	90	90	90	90	68.090(3)
β [deg]	105.434(3)	82.229(2)	108.890(3)	100.8960(10)	100.9570(10)	101.0980(10)	83.488(3)
γ [deg]	90	77.488(2)	90	90	90	90	81.416(3)
Volume [nm ³]	1.48093(6)	1.93876(7)	3.6392(2)	5.3548(1)	5.3225(1)	5.2365(1)	1.8292(1)
Ζ	2	2	4	4	4	4	2
ho (calc) [Mg/m ³]	1.100	1.162	1.103	1.358	1.257	1.218	1.272
μ mm ⁻¹	0.270	0.418	0.396	3.674	0.902	1.039	1.365
<i>F</i> (000)	536	732	1304	2240	2112	2040	736
Crystal size (mm ³)	0.40 x 0.25 x 0.15	0.25 x 0.20 x	0.35 x 0.30 x	0.39 x 0.08 x	0.70 x 0.11 x	0.40 x 0.30 x	0.30 x 0.20 x
		0.10	0.20	0.05	0.08	0.25	0.10
Θ min / Θ max [deg]	1.888 / 32.561	2.368 / 34.907	1.734 / 29.213	1.705 / 30.258	1.958 / 32.303	2.293 / 32.689	2.285 / 32.508
Index ranges	$-13 \le h \le 13$	–15 ≤ <i>h</i> ≤ 15	–16 ≤ <i>h</i> ≤ 17	–18 ≤ <i>h</i> ≤ 19	$-20 \le h \le 21$	–20 ≤ <i>h</i> ≤ 19	$-13 \le h \le 13$
	$-23 \le k \le 22$	$-20 \le k \le 21$	$-24 \le k \le 24$	$-31 \le k \le 32$	$-35 \le k \le 35$	$-34 \le k \le 35$	$-20 \le k \le 19$
	$-16 \leq l \leq 16$	$-24 \le l \le 23$	$-22 \le l \le 20$	$-21 \leq l \leq 22$	$-24 \le l \le 23$	$-23 \leq l \leq 24$	$-24 \leq l \leq 23$
Reflections collected	19005	56622	33109	57685	40984	78078	40036
tions [R(int)]	9687 [0.0318]	15839 [0.0188]	8716 [0.0429]	14673 [0.0538]	40984 [0.0518]	17694 [0.0458]	12182 [0.0366]
Completeness [%] (Θ) [deg]	100.0 (30.510)	99.96 (33.070)	100.0 (26.375)	100.0 (28.285)	100.0 (30.510)	100.0 (30.510)	100.0 (30.510)
T _{Max} / T _{Min}	1.00000 / 0.78300	1.00000 /	1.00000 / 0.68495	1.00000 /	1.00000 /	1.00000 / 0.98587	1.00000 / 0.95830
Restraints / parame- ters	1 / 284	0 / 355	0 / 316	0 / 469	0 / 470	0 / 469	0 / 344
Goodness-of-fit on F^2	1.028	1.062	1.013	1.023	0.802	1.044	1.121

$R_1, wR_2 [I > 2\sigma(I)]$	0.0384, 0.0798	0.0245, 0.0593	0.0450, 0.1033	0.0359, 0.0654	0.0363, 0.0549	0.0348, 0.0678	0.0415, 0.0741
R indices (all data)	0.0491, 0.0861	0.0316, 0.0626	0.0884, 0.1231	0.0533, 0.0710	0.0827, 0.0595	0.0577, 0.0760	0.0621, 0.0798
Absolute structure	0.00(3)	_	_	_	_	_	_
parameter							
Residual electron	0.229 / -0.297	0.415 / -0.229	0.364 / -0.240	1.117 / –1.001	1.053 / –1.142	0.418 / -0.412	0.353 / -0.309
density [e·Å⁻³]							
CCDC number	2097486	2097387	2097487	2097488	2097489	2097490	2097491
⁺ Two component twin. ⁻	Twin law by rows –0.50	0 –0.50 –0.25, 1.50 –0	0.50 0.25, 0.00 0.00	1.00; Twin domain r	atio: 0.9358(1) : 0.0	642(1)	

3. NMR Spectra

All spectra were recorded in C_6D_6 at 25 °C unless stated otherwise.

3.1. $[Li{cyclo}-(P_4^tBu_3)](thf)(tmeda)](1)$

Fig. S1 ¹H NMR spectrum of **1** at 400 MHz.

Fig. S2 7 Li{ 1 H} NMR spectrum of **1** at 156 MHz.

Fig. S3 ${}^{13}C{}^{1}H$ NMR spectrum of **1** at 101 MHz.

Fig. S4 ${}^{31}P{}^{1}H$ NMR spectrum of 1 at 162 MHz.

Fig. S5 Experimental (top) and simulated (bottom) ${}^{31}P{}^{1}H$ NMR spectrum of 1 at 162 MHz.

3.2. ${cyclo-(P_4^tBu_3)}_2$ (2)

Fig. S6 ¹H NMR spectrum of 2.2 THF at 400 MHz. * = silicon grease

Fig. S7 ³¹P{¹H} NMR spectrum of 2.2 THF at 162 MHz (ns = 9567).

Fig. S8 Experimental (top) and simulated (bottom) ³¹P{¹H} NMR spectrum of 2.2THF at 162 MHz.

3.3. ${cyclo-(P_4^tBu_3)}_2P^tBu$ (3)

Fig. S10 ${}^{31}P{}^{1}H$ NMR spectrum of **3** at 162 MHz (ns = 7533).

3.4. ${cyclo-(P_4^tBu_3)}_2CH_2$ (4)

Fig. S11 ¹H NMR spectrum of 4 at 400 MHz. Residual methanol is marked with an asterisk.

35 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 ppm

Fig. S12 ¹³C{¹H} NMR spectrum of **4** at 101 MHz (ns = 4096).

Fig. S13 ¹³C{¹H,³¹P} NMR spectrum of **4** at 101 MHz and 28 °C (ns = 8192).

Fig. S14 ³¹P{¹H} NMR spectrum of **4** at 162 MHz (ns = 10842).

3.5. $Bi\{cyclo-(P_4^tBu_3)\}_3$ (5)

Fig. S16 ¹H NMR spectrum of 5 at 400 MHz.

ppm

Fig. S17 ${}^{13}C{}^{1}H$ NMR spectrum of **5** at 101 MHz (ns = 4096).

Fig. S18 ${}^{13}C{}^{1}H,{}^{31}P{}$ NMR spectrum of 5 at 101 MHz and 28 °C (ns = 10240).

Fig. S19 ${}^{31}P{}^{1}H{}$ NMR spectrum of **5** at 162 MHz (ns = 10423).

Fig. S20 ³¹P{¹H} NMR spectrum at 162 MHz of a solution of **5** in C₆D₆ after one hour exposure to sunlight. **2**,² **3**,³ **B** = *cyclo*-(P^tBu)₃,⁴ **C** = *cyclo*-(P^tBu)₄,⁵ **D** = {*cyclo*-(P₄^tBu₃)^tBu}₂,³ **E** = P₆^tBu₄⁶ (ns = 32768, lb = 15 Hz). The region below –100 ppm displays strong overlap of different signals. P₇^tBu₅ is also observed⁷ but not assigned as not all of its resonances are visible due to the low quality of the spectrum.

Fig. S21 ³¹P{¹H} NMR spectrum at 162 MHz of a solution of **2**·2 THF in C₆D₆ exposed to the sunlight for 5 h. **A**, ⁶ **B**, ⁴ **C**, ⁵ **D**, ⁷ **E**, ⁸ **2**, ² and **3**³ are literature known.

Fig. S22 ³¹P{¹H} NMR spectrum at 162 MHz of a solution of **3** in C₆D₆ exposed to the sunlight for 5 h. **A**,⁶ **B**,⁴ **C**,⁵ **D**,⁷ **2**,² and **3**³ are literature known.

3.6. Sb{ $cyclo-(P_4^tBu_3)$ } (6)

Fig. S23 ¹H NMR spectrum of 6 at 400 MHz.

ppm

Fig. S24 ${}^{13}C{}^{1}H$ NMR spectrum of **6** at 101 MHz (ns = 2044).

Fig. S25 ¹³C{¹H,³¹P} NMR spectrum of **6** at 101 MHz and 28 °C (ns = 8192).

Fig. S26 ³¹P{¹H} NMR spectrum of 6 at 162 MHz (ns = 1426).

3.7. As{*cyclo*-(P₄^tBu₃)}₃ (7)

Fig. S27 ¹H NMR spectrum of 7 at 400 MHz.

Fig. S28 ${}^{13}C{}^{1}H$ NMR spectrum of **7** at 101 MHz (ns = 4584).

40 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 ppm

Fig. S29 ${}^{13}C{}^{1}H, {}^{31}P{}$ NMR spectrum of 7 at 101 MHz and 28 °C (ns = 4785).

Fig. S30 ³¹P{¹H} NMR spectrum of **7** at 162 MHz (ns = 8433).

3.8. As{*cyclo*-(P₄^tBu₃)}₂Cl (8)

Fig. S31 ¹H NMR spectrum of 8 at 400 MHz.

Fig. S32 $^{1}H{^{31}P}$ NMR spectrum of 8 at 400 MHz.

Fig. S33 ${}^{13}C{}^{1}H$ NMR spectrum of **8** at 101 MHz (ns = 2772).

Fig. S34 ¹³C{¹H,³¹P} NMR spectrum of **8** at 101 MHz and 28 °C (ns = 13734; lb = 0.5 Hz).

Fig. S35 ³¹P{¹H} NMR spectrum of **8** at 162 MHz (ns = 11021).

3.9. *cyclo*-{P₄^tBu₃(SiMe₃)}

Fig. S37 ¹H NMR spectrum of cyclo-{P₄^tBu₃(SiMe₃)} at 400 MHz.

Fig. S38 ³¹P{¹H} NMR spectrum of *cyclo*-{P₄^tBu₃(SiMe₃)} at 162 MHz. * = *cyclo*-{P₄^tBu₃H}.

4. References

- 1 G. Fritz, J. Härer and K. Stoll, Untersuchungen zur Metallierung der Cyclophosphane P₄(Cme₃)₃(Sime₃), P₄(Cme₃)₂(Sime₃)₂, P₄(Sime₃)₄, *Z. Anorg. Allg. Chem.*, 1983, **504**, 47.
- 2 M. Baudler, J. Hellmann, P. Bachmann, K.-F. Tebbe, R. Fröhlich and M. Fehér, tBu₆P₈ and tBu₆As₈ — Two New Element-Homologous Bicyclic Compounds of Different Structure, Angew. Chem., Int. Ed. Engl., 1981, **20**, 406.
- M. Baudler, M. Schnalke and C. Wiaterek, Beiträge zur Chemie des Phosphors. 202. Heptatert-butyl-nonaphosphan(7), P₉(t-Bu)₇, und Octa-tert-butyl-decaphosphan(8), P₁₀(t-Bu)₈
 Darstellung und ³¹P-NMR-spektroskopische Strukturbestimmung, Z. Anorg. Allg. Chem., 1990, 585, 7.
- 4 M. Baudler, J. Hahn, H. Dietsch and G. Fürstenberg, Beiträge zur Chemie des Phosphors. 68. Tri-*t*-butyl-cyclotriphosphan, *Z. Naturforsch., B: Anorg. Chem., Org. Chem.*, 1976, **31b**, 1305.
- K. Issleib and M. Hoffmann, Alkali-Phosphorverbindungen und ihr reaktives Verhalten. XLI.
 Tetra-tert.-butyl-biphosphin und Tetra-tert.-butyl-cyclotetraphosphin, *Chem. Ber.*, 1966,
 99, 1320.
- 6 M. Baudler, Y. Aktalay, K.-F. Tebbe and T. Heinlein, *t*Bu₄P₆, a Novel Bicyclic Organophosphane, *Angew. Chem., Int. Ed. Engl.*, 1981, **20**, 967.
- M. Baudler, M. Michels, J. Hahn and M. Pieroth, P₇tBu₅ The First Bicyclo[3.2.0]heptaphos-phane, *Angew. Chem., Int. Ed. Engl.*, 1985, **24**, 504.
- 8 T. Grell and E. Hey-Hawkins, Unexpected Isomerization of Hexa-*tert*-butyl-octaphosphane, *Chem. – Eur. J.*, 2020, **26**, 1008.