SUPPLEMENTARY INFORMATION

Influence of the temperature on the equilibria of oxidovanadium(IV) complexes in solution

Daniele Sanna ${ }^{\text {a }}$, Giuseppe Lubinu ${ }^{\text {b }}$, Valeria Ugone*a, Eugenio Garribba ${ }^{\text {b }}$

${ }^{\text {a }}$ Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Trav. La Crucca 3, I-07100 Sassari, Italy.
${ }^{\mathrm{b}}$ Dipartimento di Chimica e Farmacia, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy.

* Corresponding author. E-mail addresses: valeria.ugone@cnr.it (V. Ugone)

Table S1 Experimental ($g_{0}, A_{0}, g_{\mathrm{z}}, A_{\mathrm{z}}$) and DFT calculated ($A_{\mathrm{z}}{ }^{\text {calcd }}$) spin Hamiltonian parameters for V complexes studied in this work. ${ }^{\text {a }}$

Complex	Isomer	g_{0}	A_{0}	$g_{\text {z }}$	$A_{\text {z }}$	$A_{\mathrm{Z}}{ }^{\text {calcd }}$	PD ${ }^{\text {b }}$
[VO(dhp) ${ }_{2}$]	SPY-5-12	1.976	84.1	1.953	158.1	158.97	0.6
	SPY-5-13					159.19	0.7
cis-[$\left.\mathrm{VO}(\mathrm{dhp})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$	OC-6-23	-	-	$1.940{ }^{\text {c }}$	$169.0{ }^{\text {c }}$	166.27	-1.4
	OC-6-34					166.65	-1.6
cis-[VO(dhp $\left.)_{2}(\mathrm{MeIm})\right]^{\text {d }}$	OC-6-34 (154 ${ }^{\circ}$	-	-	1.947	162.8	159.64	-1.9
	OC-6-34 (345 ${ }^{\circ}$					159.21	-2.2
	OC-6-23 (149 ${ }^{\circ}$					158.66	-2.5
	OC-6-23 (336 ${ }^{\circ}$					158.63	-2.6
[$\left.\mathrm{VO}(\mathrm{ma})_{2}\right]$	SPY-5-12	$1.975^{\text {e }}$	$90.4{ }^{\text {e }}$	$1.948{ }^{\text {f }}$	$161.1{ }^{\text {f }}$	160.63	-0.3
	SPY-5-13					162.29	0.7
cis-[VO(ma) $\left.2\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$	OC-6-32	1.969	95.7	1.943	168.9	168.61	-0.2
	OC-6-34					168.63	-0.2
$c i s-\left[\mathrm{VO}(\mathrm{ma})_{2}(\mathrm{MeIm})\right]^{\text {d }}$	$O C-6-32\left(3^{\circ}\right)$	g	g	$1.948{ }^{\text {h }}$	$164.8{ }^{\text {h }}$	161.66	-1.9
	OC-6-32 (187 ${ }^{\circ}$					162.11	-1.6
	OC-6-34 (9 ${ }^{\circ}$)					162.17	-1.6
	OC-6-34 (198)					162.18	-1.6
$c i s-\left[\mathrm{VO}(\mathrm{pic})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$	OC-6-23	1.975	91.9	1.946	163.8	163.50	-0.2
	OC-6-24					160.94	-1.7
$c i s-\left[\mathrm{VO}(\mathrm{pic})_{2}(\mathrm{OH})\right]^{-}$	OC-6-23	g	g	1.949	160.7	154.19	-4.1
	OC-6-24					154.32	-4.0
cis-[VO(pic) $\left.)_{2}(\mathrm{MeIm})\right]^{\text {d }}$	$O C-6-23\left(212^{\circ}\right)$	g	g	1.951	159.5	155.31	-2.6
	OC-6-24 (188 ${ }^{\circ}$)					155.88	-2.3

${ }^{\text {a }} A$ values reported in $10^{-4} \mathrm{~cm}^{-1}$. ${ }^{\text {b }}$ Percent deviation (PD) with respect to the absolute experimental A_{z} value calculated as: $100 \times\left[\left(\left|A_{z}\right|^{\text {calcd }}-\left|A_{z}\right|\right)\left|/\left|A_{z}\right|\right] .{ }^{\mathrm{c}}\right.$ Measured in $\mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH} 9 / 1 .{ }^{\mathrm{d}}$ The isomers listed in tables $\mathrm{S} 3, \mathrm{~S} 4$ and S 5 are reported with the corresponding $\mathrm{O}=\mathrm{V}-\mathrm{N}_{\text {MeIm }}-\mathrm{C}_{\text {MeIm }}$ dihedral angle in parentheses. ${ }^{\mathrm{e}}$ Measured in $\mathrm{CHCl}_{3} /$ toluene $6 / 4 \mathrm{v} / \mathrm{v}$. ${ }^{\mathrm{f}}$ From ref. D. Sanna et al., Eur. J. Inorg. Chem., 2012, 1079-1092. ${ }^{g}$ Not measurable. ${ }^{\text {h }}$ From refs. D. Sanna et al., Metallomics, 2012, 4, 33-36; D. Sanna et al., Inorg. Chem., 2010, 49, 174-187).

Table S2 Gibbs free energy values (at 298.15 and 120 K) for spy and cis- $O h$ isomers of the $\mathrm{V}^{\mathrm{IV}} \mathrm{O}^{2+}$ complex formed by dhp ligand. ${ }^{\text {a,b }}$

Isomer $^{\text {c }}$	$G_{\text {aq }}(298.15 \mathrm{~K})$	$G_{\text {aq }}(120 \mathrm{~K})$
$O C-6-34$	-1288197.71	-1288173.88
$O C-6-32$	-1288198.65	-1288174.47
$O C-6-24$	-1288198.50	-1288174.31
$O C-6-23$	-1288198.75	-1288174.60
$S P Y-5-12$	-1240121.82	-1240099.28
$S P Y-5-13$	-1240120.98	-1240098.85

${ }^{\text {a }}$ Values reported in kcal mol ${ }^{-1} .{ }^{\mathrm{b}}$ Calculations performed at the B3P86/6-311g(d,p) level of theory using the SMD model for water. ${ }^{\mathrm{c}}$ Structures are shown in Scheme S1.

Table S3 Gibbs free energy values (at 298.15 and 120K) for the most stable isomers of [VO(dhp) $)_{2}(\mathrm{MeIm})$] complex. ${ }^{\text {a,b }}$

Isomer	Dihedral angle $\mathrm{O}=\mathrm{V}-\mathrm{N}_{\mathrm{Melm}-\mathrm{C}_{\text {Melm }^{\mathrm{c}}}}$	$G_{\text {aq }}(298.15 \mathrm{~K})$	$G_{\text {aq }}(120 \mathrm{~K})$
$c i s-\left[\mathrm{VO}(\mathrm{dhp})_{2}(\mathrm{MeIm})\right]^{\mathrm{d}}$	153.69	-1407234.36	-1407207.55
$c i s-\left[\mathrm{VO}(\mathrm{dhp})_{2}(\mathrm{MeIm})\right]^{\mathrm{d}}$	345.35	-1407233.91	-1407207.43
$c i s-\left[\mathrm{VO}(\mathrm{dhp})_{2}(\mathrm{MeIm})\right]^{\mathrm{e}}$	149.24	-1407235.10	-1407207.95
$c i s-\left[\mathrm{VO}(\mathrm{dhp})_{2}(\mathrm{MeIm})\right]^{\mathrm{e}}$	335.75	-1407234.54	-1407207.81

${ }^{\text {a }}$ Values reported in $\mathrm{kcal} \mathrm{mol}^{-1} .{ }^{\mathrm{b}}$ Calculations performed at the B3P86/6-311g(d,p) level of theory using the SMD model for water. ${ }^{\mathrm{c}}$ The values were obtained after optimization of the structures at the minimum points in the scan calculation. ${ }^{\text {d }}$ Structure obtained from $O C-6-34$ substituting water molecule with MeIm with two different dihedral angles. ${ }^{\text {e }}$ Structure obtained from $O C-6-23$ substituting water molecule with MeIm with two different dihedral angles.

Table S4 Gibbs free energy values (at 298.15 and 120K) for the most stable isomers of [VO(ma) $)_{2}(\mathrm{MeIm})$] complex. a,b

Isomer	Dihedral angle $\mathrm{O}=\mathrm{V}-\mathrm{N}_{\text {Melm }-\mathrm{C}_{\mathrm{Melm}^{\mathrm{c}}}}$	$G_{\mathrm{aq}}(298.15 \mathrm{~K})$	$G_{\mathrm{aq}}(120 \mathrm{~K})$
$c^{i s}-\left[\mathrm{VO}(\mathrm{ma})_{2}(\mathrm{MeIm})\right]^{\mathrm{d}}$	3.41	-1382652.47	-1382626.90
$c i s-\left[\mathrm{VO}(\mathrm{ma})_{2}(\mathrm{MeIm})\right]^{\mathrm{d}}$	186.59	-1382652.46	-1382626.84
$c i s-\left[\mathrm{VO}(\mathrm{ma})_{2}(\mathrm{MeIm})\right]^{\mathrm{e}}$	8.82	-1382654.66	-1382628.38
$c^{\mathrm{c}}-\left[\mathrm{VO}(\mathrm{ma})_{2}(\mathrm{MeIm})\right]^{\mathrm{e}}$	197.85	-1382654.75	-1382628.41

${ }^{\text {a }}$ Values reported in $\mathrm{kcal} \mathrm{mol}^{-1} .{ }^{\mathrm{b}}$ Calculations performed at the B3P86/6-311g(d,p) level of theory using the SMD model for water. ${ }^{\mathrm{c}}$ The values were obtained after optimization of the structures at the minimum points in the scan calculation. ${ }^{d}$ Structure obtained from $O C-6-32$ substituting water molecule with MeIm with two different dihedral angles. ${ }^{\text {e }}$ Structure obtained from $O C-6-34$ substituting water molecule with MeIm with two different dihedral angles.

Table S5 Gibbs free energy values (at 298.15 and 120 K) for the most stable isomers of [VO(pic) $)_{2}(\mathrm{MeIm})$] complex. ${ }^{\text {a,b }}$

Isomer	Dihedral angle $\mathrm{O}=\mathrm{V}-\mathrm{N}_{\mathrm{Melm}}-\mathrm{C}_{\mathrm{Melm}}{ }^{\mathrm{c}}$	$G_{\text {aq }}(298.15 \mathrm{~K})$	$G_{\text {aq }}(120 \mathrm{~K})$
$c i s-\left[\mathrm{VO}(\mathrm{pic})_{2}(\mathrm{MeIm})\right]^{\mathrm{d}}$	192.29	-1356210.74	-1356186.11
cis-[VO(pic) $\left.)_{2}(\mathrm{MeIm})\right]^{\text {d }}$	211.58	-1356211.19	-1356186.21
$c i s-\left[\mathrm{VO}(\mathrm{pic})_{2}(\mathrm{MeIm})\right]^{\text {e }}$	182.35	-1356209.63	-1356184.92
$c i s-\left[\mathrm{VO}(\mathrm{pic})_{2}(\mathrm{MeIm})\right]^{\text {e }}$	187.87	-1356209.79	-1356184.83

${ }^{\text {a }}$ Values reported in $\mathrm{kcal} \mathrm{mol}^{-1} .{ }^{\mathrm{b}}$ Calculations performed at the B3P86/6-311g(d,p) level of theory using the SMD model for water. ${ }^{\mathrm{c}}$ The values were obtained after optimization of the structures at the minimum points in the scan calculation. ${ }^{d}$ Structure obtained from $O C-6-24$ substituting water molecule with MeIm with two different dihedral angles. ${ }^{\text {e }}$ Structure obtained from $O C-6-23$ substituting water molecule with MeIm with two different dihedral angles.

SPY-5-12

SPY-5-13

Scheme S1 Possible isomers for the penta-coordinated [VO(dhp) $)_{2}$] and hexa-coordinated cis-[VO(dhp) $\left.2\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ species.

$O C-6-34$

$O C-6-32$

Scheme S2 Most stable isomers for the hexa-coordinated cis-[VO(ma $\left.)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ species.

Scheme S3 Most stable isomers for the hexa-coordinated cis-[VO(pic $\left.)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ species.

Fig. S1 Isotropic EPR spectra recorded at variable temperature on solutions containing: a) $\mathrm{VO}^{2+} / \mathrm{dhp} 1 / 2, \mathrm{VO}^{2+} 1 \mathrm{mM}$, in HEPES 0.1 M pH 7.40 ; b) $\mathrm{VO}^{2+} / \mathrm{dhp} / \mathrm{MeIm} 1 / 2 / 4, \mathrm{VO}^{2+} 1 \mathrm{mM}$, in HEPES 0.1 M pH 7.40 ; c) $\mathrm{VO}^{2+} / \mathrm{dhp} 1 / 2, \mathrm{VO}^{2+} 1 \mathrm{mM}$, in HEPES $0.1 \mathrm{M} \mathrm{pH} 7.40 ; \mathrm{d}) \mathrm{VO}^{2+} / \mathrm{dhp} / \mathrm{MeIm} 1 / 2 / 4, \mathrm{VO}^{2+} 1 \mathrm{mM}$, in HEPES 0.1 M pH 7.40 .

Fig. S2 Experimental (black) anisotropic EPR spectrum recorded at 120 K on frozen solution containing $\mathrm{VO}^{2+} / \mathrm{dhp} / \mathrm{MeIm}$ $1 / 2 / 4, \mathrm{VO}^{2+} 1 \mathrm{mM}$, in HEPES 0.1 M pH 7.40 . The spectrum was simulated (red) with the following parameters: $A_{\mathrm{x}} 54.5$ $\times 10^{-4} \mathrm{~cm}^{-1}, A_{\mathrm{y}} 55.5 \times 10^{-4} \mathrm{~cm}^{-1}, A_{\mathrm{z}} 162.8 \times 10^{-4} \mathrm{~cm}^{-1}, g_{\mathrm{x}} 1.980, \mathrm{~g}_{\mathrm{y}} 1.972, g_{\mathrm{z}} 1.947$. The spectrum has been assigned to the species cis-[VO(dhp) $\left.)_{2}(\mathrm{MeIm})\right]$.

Fig. S3 Electronic energy values in solution $\left(E_{\text {aq }}, 298.15 \mathrm{~K}\right)$ in function of the $\mathrm{O}=\mathrm{V}-\mathrm{N}_{\text {MeIm }}-\mathrm{C}_{\text {Melm }}$ dihedral angle. Relaxed scan calculation performed on cis-[VO(dhp) $\left.)_{2}(\mathrm{MeIm})\right]$ structure obtained substituting water molecule with MeIm from $O C-6-23$.
a

Fig. S4 Anisotropic EPR spectra recorded at 120 K on frozen solutions containing: a) $\mathrm{VO}^{2+} / \mathrm{ma}^{1 / 2}, \mathrm{VO}^{2+} 1 \mathrm{mM}$, in HEPES $0.1 \mathrm{M} \mathrm{pH} 7.40 ; \mathrm{b}$) $\mathrm{VO}^{2+} / \mathrm{ma} / \mathrm{Mb} 1 / 2 / 1, \mathrm{VO}^{2+} 1 \mathrm{mM}$, in HEPES 0.1 M pH 7.40 ; c) $\mathrm{VO}^{2+} / \mathrm{ma} / \mathrm{MeIm} 1 / 2 / 4, \mathrm{VO}^{2+} 1$ mM , in HEPES 0.1 M pH 7.40 .

Fig. S5 Experimental (black) anisotropic EPR spectrum recorded at 120 K on frozen solutions containing $\mathrm{VO}^{2+} / \mathrm{ma}^{1 / 2}$, $\mathrm{VO}^{2+} 1 \mathrm{mM}$, in HEPES 0.1 M pH 7.40 . The spectrum was simulated (red) with the following parameters: $A_{\mathrm{x}} 58.0 \times 10^{-4}$ $\mathrm{cm}^{-1}, A_{\mathrm{y}} 62.0 \times 10^{-4} \mathrm{~cm}^{-1}, A_{\mathrm{z}} 168.9 \times 10^{-4} \mathrm{~cm}^{-1}, g_{\mathrm{x}} 1.977, \mathrm{~g}_{\mathrm{y}} 1.976, g_{\mathrm{z}} 1.942$. The spectrum has been assigned to the species cis-[VO(ma) $\left.2_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$.

Fig. S6 Isotropic EPR spectra recorded at variable temperature on solutions containing: a) $\mathrm{VO}^{2+} / \mathrm{ma}^{2} 1 / 2, \mathrm{VO}^{2+} 1 \mathrm{mM}$, in HEPES 0.1 M , pH 7.37 ; b) $\mathrm{VO}^{2+} / \mathrm{ma} / \mathrm{MeIm} 1 / 2 / 4, \mathrm{VO}^{2+} 1 \mathrm{mM}$, in HEPES 0.1 M , $\mathrm{pH} 7.40,325 \mathrm{~K}$; c) $\mathrm{VO}^{2+} / \mathrm{ma} / \mathrm{MeIm}$ $1 / 2 / 4, \mathrm{VO}^{2+} 1 \mathrm{mM}$, in HEPES 0.1 M pH 7.40 . With II, II and III the resonances of cis-[VO(ma $\left.)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$, trans$\left[\mathrm{VO}(\mathrm{ma})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ and $c i s-\left[\mathrm{VO}(\mathrm{ma})_{2}(\mathrm{MeIm})\right]$ are indicated.

Fig. S7 Isotropic EPR spectra recorded at 298 K on solutions containing: a) $\mathrm{VO}^{2+} / \mathrm{pic} 1 / 2, \mathrm{VO}^{2+} 1 \mathrm{mM}$, in HEPES 0.1 M pH 7.52; b) $\mathrm{VO}^{2+} /$ pic/MeIm $1 / 2 / 4, \mathrm{VO}^{2+} 1 \mathrm{mM}$, in HEPES 0.1 M pH 7.52 .

