Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2021

Supporting Information

New Ln-MOFs based on mixed organic ligands: synthesis, structure and

efficient luminescence sensing of the Hg²⁺ ion in aqueous solutions

Shu-Ju Wang,^a Qian Li,^a Guan-Lin Xiu,^a Li-Xin You,^a Fu Ding,^{a,b} Rik Van Deun,^{*c} Ileana Dragutan,^{*d} Valerian Dragutan,^d and Ya-Guang Sun^{*a,b}

^a Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province, Shenyang University of Chemical Technology, Shenyang, China

^b Key Laboratory on Resources Chemicals and Material of Ministry of Education, Shenyang University of Chemical Technology, Shenyang 110142, China

^cL³ – Luminescent Lanthanide Lab, Department of Chemistry, Ghent University, Krijgslaan 281 - S3, 9000 Ghent, Belgium

^d Institute of Organic Chemistry, Romanian Academy, Bucharest, P. O. Box 35-108, 060023, Romania

Complex	1	2	3	4
Formula	$C_{156}H_{120}Ce_4N_{10}O_{28}S_6$	$C_{156}H_{116}Pr_4N_{10}O_{26}S_6$	$C_{156}H_{120}Eu_4N_{10}O_{28}S_6$	$C_{156}H_{120}Tb_4N_{10}O_{28}S_6$
Fw	3335.45	3302.58	3382.81	3410.65
Cryst system	triclinic	triclinic	triclinic	triclinic
Space group	P-1	<i>P</i> -1	<i>P</i> -1	P-1
<i>a</i> (Å)	11.58490(10)	11.6366(10)	11.49550(10)	11.47990(10)
b (Å)	22.0977(2)	22.1801(3)	22.0977(3)	22.0925(2)
<i>c</i> (Å)	29.3064(3)	29.5908(3)	29.0980(3)	29.0010(3)
α (°)	71.0700(10)	70.7540(10)	108.9420(10)	108.9390(10)
в (°)	89.0760(10)	89.2320(10)	90.1040(10)	90.4640(10)
γ (°)	80.4440(10)	80.4290(10)	98.5400(10)	98.1850(10)
V (Å)³	6993.10(12)	7103.17(18)	6903.91(14)	6874.58(12)
Ζ	2	2	2	2
ρ _{calc} (g·cm ⁻³)	1.585	1.544	1.624	1.648
µ/mm⁻¹	11.353	11.779	14.315	11.432
F(000)	3358.0	3324.0	3384.0	3412.0
RefIns collected/ independent	135072/27833	79542/28000	82789/27158	131914/27405
GOF	1.054	1.063	1.049	1.106
R indexes(<i>l</i> > 2σ(<i>l</i>)) R indexes	$R_1 = 0.0356$ w $R_2 = 0.0964$ $R_1 = 0.0383$	$R_1 = 0.0630$ w $R_2 = 0.1825$ $R_1 = 0.0809$	$R_1 = 0.0398$ $wR_2 = 0.1047$ $R_1 = 0.0454$	$R_1 = 0.0455$ $wR_2 = 0.1246$ $R_1 = 0.0528$
(all data) $^{A}R_{1} = \Sigma F_{O} $	$WR_2 = 0.0979$ - Fc /\S Fo . ^B WR ₂	w $R_2 = 0.1963$ = {Σ[w(Fo ² – Fc ²) ²]/Σ[v	$WR_2 = 0.1077$ $W(Fo^2)^2]^{1/2}.$	w <i>R</i> ₂ = 0.1285

Table S1 Crystal data and structure refinement for complexes 1-4.

Fig. S1 The coordination environments of Eu^{3+} ions in compound **3**. The hydrogen atoms, free 1,10-phenanthroline and free water molecules were omitted for clarity.

Fig. S2 Hydrogen bonding interactions in 3.

D-HA	<i>d</i> (D-H)/nm	<i>d</i> (HA)/nm	(DA)/nm	D-HA/(°)
O(25)-H(25A)O(19)	0.085	0.202	0.2854(7)	166
O(25)-H(25B)O(25)	0.085	0.247	0.3198(9)	144
O(26A)-H(26C)O(7)	0.085	0.202	0.2860(13)	171
O(26A)-H(26D)O(26A)	0.085	0.246	0.3049(16)	127
O(27)-H(27A)N(1)	0.085	0.208	0.2870(5)	154
O(27)-H(27B)O(13)	0.085	0.201	0.2853(4)	172
O(28)-H(28A)O(4)	0.085	0.193	0.2737(4)	157
O(28)-H(28B)O(27)	0.097	0.220	0.2734(4)	113

 Table S2 Selected hydrogen bonds for complex 3.

Fig. S3 Infrared spectra of 1-4.

Fig. S4 PXRD patterns of 1-4.

Fig. S5 PXRD patterns of as-synthesized 3 (black line) and 3 soaked in solutions with different pH.

Fig. S6 Thermogravimetric analysis (TGA) curves of coordination polymer 1-4.

Fig. S7 The photographs of **3** dispersion in water before (a) and after (b) the excitation, (c)the sample soaking in Hg^{2+} solution upon excitation.

Fig. S8 Linear region of fluorescence intensity of 3 in water upon addition of Hg^{2+} solution.

Blank readings	Fluorescence Intensity
1	2035
2	1988
3	2031
4	2015
5	1998
Standard Deviation (σ)	20.38
Slope (m)	60.96786
Detection limit (3σ/m)	1.00 μΜ

 Table S3 Calculation of Detection Limit.

Table S4 Comparison of the sensitivities of **3** with previously reported probes for Hg^{2+} ions.

Probe	Target ion	Detection Limit (μM)	Reference
[Cd(L)(NTA)] _n		3.05	15a
[Ni(L)(NPTA)·H₂O] _n		2.29	15a

S, N-GQDs	9.14	15b
AuNPs@CNF	0.001	15c
SiO ₂ -AuNCs	0.004	15d
[Co(NPDC)(bpee)]·DMF·2H ₂ O	4.1	15e
[PCN-221]	0.01	15f
${[Eu_4(tmba)_6(phen)_4]} \cdot 3(H_2O)(phen)}_n$	1.00	this work

Fig. S9 PXRD patterns of compound 3, as-synthesized (black line) and after three recycling experiments of soaking into Hg^{2+} solutions.

Fig. S10 UV-Vis absorption spectra of different measured ions.

Fig. S11 (a) The XPS spectrum for the S2p region of 3; (b) The XPS spectrum for the S2p region of 3 after soaking into a Hg²⁺ solution.

Fig. S12 (a) The XPS spectrum for the N1s region of 3; (b) The XPS spectrum for the N1s region of 3 after soaking into a Hg²⁺ solution.