Supplementary data

Synthesis and biological evaluation of ruthenium polypyridine complexes with 18β-glycyrrhetinic acid as antibacterial agents against *Staphylococcus aureus*

Qin Zhang, a Yanshi Xiong, a Jianxin Cheng, a Yanhui Tan, b Xiangwen Liao*, a and Jintao Wang* a

aJiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, People’s Republic of China. E-mail address: E-mail address: liao492008522@163.com or jintaochem@163.com

bState Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People’s Republic of China.

List of contents

The synthetic route of ligand and ruthenium complexesS1
Distribution coefficients of complexes and GA..........................S2
Time-kill kinetics of Ru2 against *S. aureus*S3

1H NMR, 13C NMR and HRMS for the target ligands and the complexes (Ru1-Ru4) ...S4-S23
Fig. S1 The synthetic route of ligand and ruthenium complexes.

Fig. S2 Distribution coefficients of complexes and GA in an n-octanol-buffer mixture.
Fig. S3 Time-kill kinetics of Ru2 against S. aureus.

Fig. S4 1H NMR of L2.
Fig. S5 13C NMR of L2.

Fig. S6 HRMS of L2.
Fig. S7 1H NMR of L.

Fig. S8 13C NMR of L.
Fig. S9 HRMS of L.

Fig. S10 1H NMR of Ru0.
Fig. S11 13C NMR of Ru0.

Fig. S12 1H NMR of Ru1.
Fig. S13 13C NMR of Ru1.

Fig. 14 HRMS of Ru1.
Fig. S15 1H NMR of Ru2.

Fig. S16 13C NMR of Ru2.
Fig. S17 HRMS of Ru2.

Fig. S18 1H NMR of Ru3.
Fig. S19 13C NMR of Ru3.

Fig. S20 HRMS of Ru3.
Fig. S21 1H NMR of Ru4.

Fig. S22 13C NMR of Ru4.
Fig. S23 HRMS of Ru4.