Electronic and steric impact of bis-NHC ligands on reactions of $\mathbf{P t}_{3} \mathbf{S}_{\mathbf{2}}$ cores in trinuclear complexes bearing bis-NHC ligands with different lengths of alkylene bridges
 Natsuki Yabune, Hiroshi Nakajima and Takanori Nishioka*
 Department of Chemistry, Graduate School of Science, Osaka City University, Osaka 5588585, Japan.

Supplementary Information

1. Experimental procedures
2. X-ray crystallography
3. ${ }^{1} \mathrm{H}$ NMR spectrum at 253 K and mass spectrum of $[2]\left(\mathrm{PF}_{6}\right)_{2}$ in the presence of 1 eq. $\operatorname{Ag}\left(\mathrm{PF}_{6}\right)$.
4. References

1. Experimental procedures

General Procedures: All chemicals were purchased from Sigma-Aldrich, Nacalai Tesque and Wako Pure Chemical Industries. All reagents and solvents were used as received. $c i s-\left[\mathrm{Pt}(\mathrm{bisNHC}-\mathrm{C} 2)(\mathrm{SH})_{2}\right]($ bisNHC-C2 $=$ 1,1'-Dimethyl-3,3'-ethylene-4-diimidazolilydene) was prepared according to the reported procedures. ${ }^{1}$ cis$\left[\mathrm{Pt}(\right.$ bisNHC-C2 $\left.) \mathrm{Cl}_{2}\right]$ was synthesised from the reaction of $\mathrm{K}_{2}\left[\mathrm{PtCl}_{4}\right]$ and $\left[(\mathrm{bisNHC}-\mathrm{C} 2) \mathrm{H}_{2}\right]\left(\mathrm{PF}_{6}\right)_{2}$ in DMSO using a previously reported procedure. ${ }^{11} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker AVANCE 400 or 600 FTNMR spectrometers. Chemical shifts (δ in ppm, coupling constants J in Hz) for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR signals are expressed from SiMe_{4} and referenced to residual solvent resonances. Elemental analyses were performed on a JScience Lab JM-10 elemental analyser by the Analytical Research Centre at Osaka City University.

Synthesis of $\left[\mathbf{P t}(\right.$ bisNHC-C2 $)\left(\mathrm{NCMe}_{2}\right)_{2}\left(\mathrm{PF}_{6}\right)_{2}$

A solution of $\mathrm{AgPF}_{6}(1.04 \mathrm{~g}, 4.12 \mathrm{mmol})$ in $\mathrm{MeCN}(10 \mathrm{~mL})$ was added to a solution of cis-[$\mathrm{Pt}($ bisNHC-C2 $\left.) \mathrm{Cl}_{2}\right]$ $(0.93 \mathrm{~g}, 2.04 \mathrm{mmol})$ in $\mathrm{MeCN}(30 \mathrm{~mL})$ to give a colourless solution with a white solid of AgCl . After the mixture was stirred for 3.5 h , the white solid was removed by centrifugation three times to give a colorless solution. The solvent was removed under reduced pressure to afford a white residue. The residue was re-dissolved in MeCN (15 mL) and insoluble white solids were removed by filtration using a membrane filter. The solvent was removed under reduced pressure to give a crude product of $\operatorname{cis}-\left[\mathrm{Pt}(\right.$ bisNHC-C2 $\left.)(\mathrm{NCMe})_{2}\right]$ as a white solid. Recrystallisation of the crude product twice from a solution in MeCN by the addition of $\mathrm{Et}_{2} \mathrm{O}$ to give colourless microcrystals. Yield: $1.43 \mathrm{~g}, 93 \%$. Anal. Calcd for $\left[\mathrm{Pt}(\right.$ bisNHC-C2 $\left.)(\mathrm{NCMe})_{2}\right]\left(\mathrm{PF}_{6}\right)_{2}\left(\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~F}_{12} \mathrm{~N}_{6} \mathrm{P}_{2} \mathrm{Pt}\right): \mathrm{C}, 22.20 ; \mathrm{H}, 2.75$; N , 11.10. Found: C, 22.02; H, 2.75; N, 10.09. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, 400 \mathrm{MHz}, 293 \mathrm{~K}\right): \delta 7.19\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=2.1 \mathrm{~Hz}, 2 \mathrm{H}\right.$, im), $7.14\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=2.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{im}\right), 5.11\left(\mathrm{ddd},{ }^{2} J_{\mathrm{H}-\mathrm{H}}=19.7 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=8.1 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=4.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2}\right), 4.48$ $\left(\mathrm{ddd},{ }^{2} J_{\mathrm{H}-\mathrm{H}}=19.7 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=8.1 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=4.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2}\right), 3.82(\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}-\mathrm{Me}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, 100\right.$ $\mathrm{MHz}, 293 \mathrm{~K}): \delta 133(2-\mathrm{im}), 125.0\left({ }^{195} \mathrm{Pt}\right.$ satellites, ${ }^{3} J_{\mathrm{C}-\mathrm{Pt}}=38.7 \mathrm{~Hz}, 4-$ or $\left.5-\mathrm{im}\right), 124.3\left({ }^{195} \mathrm{Pt}\right.$ satellites, ${ }^{3} J_{\mathrm{C}-\mathrm{Pt}}=45.1$
$\mathrm{Hz}, 5-$ or $4-\mathrm{im}), 123.0\left(\mathrm{CD}_{3} \mathrm{CN}-\mathrm{Pt}\right), 48.3\left({ }^{195} \mathrm{Pt}\right.$ satellites, $\left.{ }^{3} J_{\mathrm{C}-\mathrm{Pt}}=16.9 \mathrm{~Hz}, \mathrm{~N}-\mathrm{CH}_{2}\right), 38.7\left({ }^{195} \mathrm{Pt}\right.$ satellites, ${ }^{3} J_{\mathrm{C}-\mathrm{Pt}}=$ $32.8 \mathrm{~Hz}, \mathrm{~N}-\mathrm{Me}$), 3.52 (septet, ${ }^{1} J_{\mathrm{C}-\mathrm{D}}=21.2 \mathrm{~Hz}, \mathrm{CD}_{3} \mathrm{CN}-\mathrm{Pt}$). The MeCN ligands were replaced with solvent molecules of $\mathrm{CD}_{3} \mathrm{CN}$.

Synthesis of $\left[\{\mathbf{P t}(\text { bisNHC-C2 })\}_{3}\left(\mu_{3}-\mathbf{S}\right)_{2}\right]\left(\mathbf{P F}_{6}\right)_{2}$

A mixture of $c i s-\left[\mathrm{Pt}(\mathrm{bisNHC}-\mathrm{C} 2)(\mathrm{SH})_{2}\right](0.020 \mathrm{~g}, 0.045 \mathrm{mmol})$, cis-[Pt(bisNHC-C2)(NCMe$\left.)_{2}\right](0.075 \mathrm{~g}, 0.099$ $\mathrm{mmol})$ and $\mathrm{KHCO}_{3}(0.32 \mathrm{~g}, 3.2 \mathrm{mmol})$ as a proton scavenger in DMSO $(10 \mathrm{~mL})$ was stirred for 15 min to give a yellow mixture, which was heated at $60^{\circ} \mathrm{C}$ for 2 h to afford a pale-yellow mixture. The solvent was removed under reduced pressure to give a pale-yellow solid. The solid was re-dissolved in water and added a solution of $\mathrm{NH}_{4} \mathrm{PF}_{6}$ $(0.17 \mathrm{~g} 1.0 \mathrm{mmol})$ in water $(5 \mathrm{~mL})$ to give a white solid, which was collected by suction filtration and washed with water. The crude product was recrystallised from an solution in MeCN by diffusion of $\mathrm{Et}_{2} \mathrm{O}$. Yield: $0.058 \mathrm{~g}, 85 \%$. Anal. Calcd for $\left[\{\mathrm{Pt}(\text { bisNHC-C2 })\}_{3}\left(\mu_{3}-\mathrm{S}\right)_{2}\right]\left(\mathrm{PF}_{6}\right)_{2} \bullet \mathrm{Et}_{2} \mathrm{O}\left(\mathrm{C}_{34} \mathrm{H}_{52} \mathrm{~F}_{12} \mathrm{~N}_{12} \mathrm{OP}_{2} \mathrm{Pt}_{3} \mathrm{~S}_{2}\right)$: C, 25.78; H, 3.31; N, 10.61. Found: C, 25.48; H, 3.15; N, 10.72. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$: C_{s} isomer: $\delta 7.04\left(\mathrm{dd},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=2.0,2.1\right.$ $\mathrm{Hz}, 4 \mathrm{H}, \mathrm{im}), 7.02-7.01(\mathrm{~m}, 4 \mathrm{H}, \mathrm{im}), 6.98\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=2.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{im}\right), 6.93\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=2.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{im}\right), 5.51-5.34$ (m, 6H, N-CH2), 4.37-4.30 (m, 6H, N-CH2), 3.93 (s, 6H, N-Me), $3.90(\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}-\mathrm{Me}), 3.65(\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}-\mathrm{Me}) . C_{3 \mathrm{~h}}$ isomer: $\delta 7.02\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=2.0 \mathrm{~Hz}, 6 \mathrm{H}, 4-\mathrm{im}\right), 6.95\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=2.0 \mathrm{~Hz}, 6 \mathrm{H}, 5-\mathrm{im}\right), 5.51-5.34\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2}\right), 4.37-$ $4.30\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2}\right), 3.73(\mathrm{~s}, 18 \mathrm{H}, \mathrm{Me}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, 150 \mathrm{MHz}, 298 \mathrm{~K}\right)$: C_{s} isomer: $\delta 159.0,158.5,156.4$ (2-Im), 123.1, 122.7, 122.52, 122.47, 122.3, 122.04 (s, 4-Im, 5-Im), 48.99, 48.7, 48.4 (s, N-CH2), 39.06, 39.04, 37.9 (s, N-Me). $C_{3 \mathrm{~h}}$ isomer: $\delta 158.1$ (2-Im), 122.8 ($\mathrm{s}, 4-\mathrm{Im}$), 121.99 (s, 5-Im), 48.5 (s, $\mathrm{N}^{2} \mathrm{CH}_{2}$), 38.3 ($\left.\mathrm{s}, \mathrm{N}-\mathrm{Me}\right)$.

Synthesis of $\left[\mathbf{A g}\left\{[\mathbf{P t}(\operatorname{bisNHC}-\mathbf{C} 2)]_{3}\left(\mu_{3}-\mathbf{S}\right)_{2}\right\}_{2}\right]\left(\mathbf{P F}_{6}\right)_{5}$

A solution of $\operatorname{AgPF}_{6}(0.0066 \mathrm{~g}, 0.026 \mathrm{mmol})$ in $\mathrm{MeCN}(2 \mathrm{~mL})$ was added to a solution of $\left[\{\operatorname{Pt}(\operatorname{bisNHC}-\mathrm{C} 2)\}_{3}\left(\mu_{3}-\right.\right.$ $\left.\mathrm{S})_{2}\right]\left(\mathrm{PF}_{6}\right)_{2}(0.056 \mathrm{~g}, 0.037 \mathrm{mmol})$ in $\mathrm{MeCN}(3 \mathrm{~mL})$. The solution was stirred for 15 min to give a yellow solution.

Diethyl ether $(15 \mathrm{~mL})$ was added to the solution to afford a yellow solid, which was collected by suction filtration and washed with diethyl ether. Yield: $0.022 \mathrm{~g}, 36 \%$. Single crystals suitable for X-ray crystallography were obtained from a solution of a crude product in a mixed solvent of MeCN and MeOH by diffusion of $\mathrm{Et}_{2} \mathrm{O}$. Anal. Calcd for $\mathrm{C}_{60} \mathrm{H}_{84} \mathrm{AgF}_{30} \mathrm{~N}_{24} \mathrm{P}_{5} \mathrm{Pt}_{6} \mathrm{~S}_{4}$: C, 22.02; H, 2.59; $\mathrm{N}, 10.27$. Found: C, 22.09; H, 2.84; $\mathrm{N}, 10.48$.

2. X-ray crystallography

Fig. S-1 Atom numbering for $[4]^{5+}$

A single crystal of $[4]\left(\mathrm{PF}_{6}\right)_{6} \cdot 2 \mathrm{MeOH}$ was mounted on a loop using Paratone. Diffraction data were collected on a Rigaku Varimax Saturn724 diffractometer using a rotation method with 0.5° frame widths. The data were integrated, scaled, sorted, and averaged using the CrystalClear ${ }^{2}$ software. Absorption corrections were applied using the multi-scan method. The structures were solved using SHELXS973 ${ }^{3}$ and refined with SHELXL Version 2018/3 ${ }^{4}$ using the CrystalStructure software. ${ }^{5}$ All hydrogen atoms were located at the calculated positions and refined as riding models. Crystallographic data are summarised in Table S1.

Table S1. Crystallographic data of triplatinum complex $[4]\left(\mathrm{PF}_{6}\right)_{5} \cdot 2 \mathrm{MeOH}$.

Formula	$\mathrm{C}_{62} \mathrm{H}_{92} \mathrm{AgF}_{30} \mathrm{~N}_{24} \mathrm{O}_{2} \mathrm{P}_{5} \mathrm{Pt}_{6} \mathrm{~S}_{4}$
$M_{\text {w }}$	3337.04
Crystal description	colourless, prism
Crystal size/mm	$0.120 \times 0.097 \times 0.039$
Crystal system	triclinic
Space group	$P^{1}(\# 15)$
a / \AA	13.456(3)
b / \AA	14.916(3)
c / \AA	15.624(3)
$\alpha /^{\circ}$	66.163(11)
$\beta 1^{\circ}$	$71.936(14)$
γ^{10}	73.777(14)
V / \AA^{3}	2683.8(10)
Z	1
$F(000)$	1572.00
$\rho_{\text {calcd }} / \mathrm{g} \mathrm{cm}^{-1}$	2.065
μ / mm^{-1}	8.1874
Total reflections	21981
Unique reflections ($R_{\text {int }}$)	11830 (0.0358)
Scan range $\theta /^{\circ}$	27.475
Completeness	0.957
Index ranges	$-14 \leq h \leq 17$
	$-19 \leq k \leq 16$
	$-20 \leq l \leq 20$
Data/restrains/para.	11830/0/595
R1 [I $>2 \sigma(I)], w R 2$ (all data)	0.0580, 0.1609
GOF on F^{2}	1.010
Max./min. $\rho / \mathrm{e} \AA^{-3}$	2.50/-3.28
Min./max. T	0.550/0.727

Table S2. Selected bond distances for $[4]\left(\mathrm{PF}_{6}\right)_{5} \bullet 2 \mathrm{MeOH}$.

Atoms	Distance $/ \AA$	Atoms	Distance $/ \AA$
Pt1-Pt2	$3.1960(9)$	Pt1-Pt3	$3.1808(9)$
Pt2-Pt3	$3.2327(9)$	Ag1-S1	$2.349(2)$
Pt1-S1	$2.385(3)$	Pt1-S2	$2.368(3)$
Pt2-S1	$2.371(3)$	Pt2-S2	$2.364(3)$
Pt3-S1	$2.377(2)$	Pt3-S2	$2.364(2)$
Pt1-C1	$1.993(13)$	Pt1-C7	$1.976(11)$
$\mathrm{Pt2-C11}$	$1.979(11)$	Pt2-C17	$2.007(12)$
$\mathrm{Pt3-C21}$	$2.029(12)$	$\mathrm{Pt} 3-\mathrm{C} 27$	$1.999(10)$

Table S3. Selected bond angles for $[4]\left(\mathrm{PF}_{6}\right)_{5} \bullet 2 \mathrm{MeOH}$.

Atoms	Angle $/{ }^{\circ}$	Atoms	Angle $/{ }^{\circ}$
$\mathrm{Pt} 2-\mathrm{Pt} 1-\mathrm{Pt} 3$	60.92(2)	Pt1-Pt2-Pt3	59.31(2)
$\mathrm{Pt} 1-\mathrm{Pt} 3-\mathrm{Pt} 2$	59.771(19)		
$\mathrm{Pt} 1-\mathrm{S} 1-\mathrm{Ag} 1$	126.26(13)	Pt2-S1-Ag1	128.74(13)
Pt3-S1-Ag1	131.64(10)	S1-Ag1-S1*	180.00(14)
S1-Pt1-S2	$77.30(9)$	S1-Pt1-C1	100.7(3)
S1-Pt1-C7	171.9(4)	S2-Pt1-C1	177.4(3)
S2-Pt1-C7	94.6(4)	C1-Pt1-C7	87.3(5)
S1-Pt2-S2	$77.65(9)$	S1-Pt2-C11	101.4(3)
$\mathrm{S} 1-\mathrm{Pt} 2-\mathrm{C} 17$	171.5(3)	S2-Pt2-C11	174.1(3)
S2-Pt2-C7	94.5(3)	C11-Pt2-C17	86.7(5)
S1-Pt3-S2	77.53(8)	S1-Pt3-C21	100.8(3)
S1-Pt3-C27	170.1(3)	S2-Pt3-C21	178.2(4)
S2-Pt3-C27	92.7(3)	C21-Pt3-C27	89.0(4)
Pt1-S1-Pt2	84.43(7)	Pt1-S1-Pt3	83.81(8)
Pt2-S1-Pt3	85.81(8)	Pt1-S2-Pt2	84.99(7)
Pt1-S2-Pt3	84.48(9)	Pt2-S2-Pt3	86.28(8)

* Symmetry operation: $2-\mathrm{x}, 1-\mathrm{y},-\mathrm{z}$

3. ${ }^{1} \mathrm{H}$ NMR spectrum at 253 K and mass spectrum of $[2]\left(\mathrm{PF}_{6}\right)_{2}$ in the presence of 1 eq. $\mathbf{A g}\left(\mathbf{P F}_{6}\right)$.

Fig. S-2 ${ }^{1} \mathrm{H}$ NMR spectrum at 253 K of $[2]\left(\mathrm{PF}_{6}\right)_{2}$ in the presence of 1 eq. $\mathbf{A g}\left(\mathrm{PF}_{6}\right)$.

Fig. S-3 ESI-mass spectrum of $[2]\left(\mathrm{PF}_{6}\right)_{2}$ in the presence of 1 eq. $\mathbf{A g}\left(\mathrm{PF}_{6}\right)$.

Fig. S-4 Expanded ESI-mass signals and their simulated ones of $[2]\left(\mathrm{PF}_{6}\right)_{2}$ in the presence of 1 eq. $\mathbf{A g}\left(\mathrm{PF}_{6}\right)$.

4. References

1 Y. Maeda, H. Hashimoto and T. Nishioka, Chem. Lett., 2012, 41, 145-147; Y. Maeda, H. Hashimoto and T. Nishioka, Dalton Trans., 2012, 41, 12038-12047.

CrystalClear, Rigaku Corporation, 1999; CrystalClear Software User's Guide, Molecular Structure Corporation, 2000; J. W. Pflugrath, Acta Cryst., 1999, D55, 1718-1725.

SHELXL97: G. M. Sheldrick, Program for crystal structure refinement; University of Göttingen: Göttingen, Germany, 1997.

4 G. M. Sheldrick, Acta Cryst. 2008, A64, 112-122.
5 CrystalStructure 4.3: Crystal Structure Analysis Package, Rigaku Corporation (2000-2019), Tokyo 1968666, Japan.

