## Electronic and steric impact of bis-NHC ligands on reactions of Pt<sub>3</sub>S<sub>2</sub> cores in trinuclear

## complexes bearing bis-NHC ligands with different lengths of alkylene bridges

Natsuki Yabune, Hiroshi Nakajima and Takanori Nishioka\*

Department of Chemistry, Graduate School of Science, Osaka City University, Osaka 558-

8585, Japan.

# **Supplementary Information**

- 1. Experimental procedures
- 2. X-ray crystallography
- <sup>1</sup>H NMR spectrum at 253 K and mass spectrum of [2](PF<sub>6</sub>)<sub>2</sub> in the presence of 1 eq. Ag(PF<sub>6</sub>).
- 4. References

#### 1. Experimental procedures

General Procedures: All chemicals were purchased from Sigma-Aldrich, Nacalai Tesque and Wako Pure Chemical Industries. All reagents and solvents were used as received. *cis*-[Pt(bisNHC-C2)(SH)<sub>2</sub>] (bisNHC-C2 = 1,1'-Dimethyl-3,3'-ethylene-4-diimidazolilydene) was prepared according to the reported procedures.<sup>1</sup> *cis*-[Pt(bisNHC-C2)Cl<sub>2</sub>] was synthesised from the reaction of K<sub>2</sub>[PtCl<sub>4</sub>] and [(bisNHC-C2)H<sub>2</sub>](PF<sub>6</sub>)<sub>2</sub> in DMSO using a previously reported procedure.<sup>1</sup> <sup>1</sup>H and <sup>13</sup>C NMR spectra were recorded on Bruker AVANCE 400 or 600 FT-NMR spectrometers. Chemical shifts ( $\delta$  in ppm, coupling constants *J* in Hz) for <sup>1</sup>H and <sup>13</sup>C NMR signals are expressed from SiMe<sub>4</sub> and referenced to residual solvent resonances. Elemental analyses were performed on a J-Science Lab JM-10 elemental analyser by the Analytical Research Centre at Osaka City University.

#### Synthesis of [Pt(bisNHC-C2)(NCMe)<sub>2</sub>](PF<sub>6</sub>)<sub>2</sub>

A solution of AgPF<sub>6</sub> (1.04 g, 4.12 mmol) in MeCN (10 mL) was added to a solution of *cis*-[Pt(bisNHC-C2)Cl<sub>2</sub>] (0.93 g, 2.04 mmol) in MeCN (30 mL) to give a colourless solution with a white solid of AgCl. After the mixture was stirred for 3.5 h, the white solid was removed by centrifugation three times to give a colorless solution. The solvent was removed under reduced pressure to afford a white residue. The residue was re-dissolved in MeCN (15 mL) and insoluble white solids were removed by filtration using a membrane filter. The solvent was removed under reduced pressure to give a crude product of *cis*-[Pt(bisNHC-C2)(NCMe)<sub>2</sub>] as a white solid. Recrystallisation of the crude product twice from a solution in MeCN by the addition of Et<sub>2</sub>O to give colourless microcrystals. Yield: 1.43 g, 93%. Anal. Calcd for [Pt(bisNHC-C2)(NCMe)<sub>2</sub>](PF<sub>6</sub>)<sub>2</sub> (C<sub>14</sub>H<sub>20</sub>F<sub>12</sub>N<sub>6</sub>P<sub>2</sub>Pt): C, 22.20; H, 2.75; N, 11.10. Found: C, 22.02; H, 2.75; N, 10.09. <sup>1</sup>H NMR (CD<sub>3</sub>CN, 400 MHz, 293 K):  $\delta$  7.19 (d, <sup>3</sup>*J*<sub>H-H</sub> = 2.1 Hz, 2H, im), 7.14 (d, <sup>3</sup>*J*<sub>H-H</sub> = 2.1 Hz, 2H, im), 5.11 (ddd, <sup>2</sup>*J*<sub>H-H</sub> = 19.7 Hz, <sup>3</sup>*J*<sub>H-H</sub> = 8.1 Hz, <sup>3</sup>*J*<sub>H-H</sub> = 4.6 Hz, 2H, N-CH<sub>2</sub>), 4.48 (ddd, <sup>2</sup>*J*<sub>H-H</sub> = 19.7 Hz, <sup>3</sup>*J*<sub>H-H</sub> = 8.1 Hz, <sup>3</sup>*J*<sub>H-H</sub> = 4.6 Hz, 2H, N-CH<sub>2</sub>), 3.82 (s, 6H, N-Me). <sup>13</sup>C NMR (CD<sub>3</sub>CN, 100 MHz, 293 K):  $\delta$  133 (2-im), 125.0 (<sup>195</sup>Pt satellites, <sup>3</sup>*J*<sub>C-Pt</sub> = 38.7 Hz, 4- or 5-im), 124.3 (<sup>195</sup>Pt satellites, <sup>3</sup>*J*<sub>C-Pt</sub> = 45.1 Hz, 5- or 4-im), 123.0 (CD<sub>3</sub><u>C</u>N–Pt), 48.3 (<sup>195</sup>Pt satellites,  ${}^{3}J_{C-Pt} = 16.9$  Hz, N-CH<sub>2</sub>), 38.7 (<sup>195</sup>Pt satellites,  ${}^{3}J_{C-Pt} = 32.8$  Hz, N-Me), 3.52 (septet,  ${}^{1}J_{C-D} = 21.2$  Hz, <u>CD<sub>3</sub>CN–Pt</u>). The MeCN ligands were replaced with solvent molecules of CD<sub>3</sub>CN.

#### Synthesis of [{Pt(bisNHC-C2)}<sub>3</sub>(µ<sub>3</sub>-S)<sub>2</sub>](PF<sub>6</sub>)<sub>2</sub>

A mixture of *cis*-[Pt(bisNHC-C2)(SH)<sub>2</sub>] (0.020 g, 0.045 mmol), *cis*-[Pt(bisNHC-C2)(NCMe)<sub>2</sub>] (0.075 g, 0.099 mmol) and KHCO<sub>3</sub> (0.32 g, 3.2 mmol) as a proton scavenger in DMSO (10 mL) was stirred for 15 min to give a yellow mixture, which was heated at 60 °C for 2 h to afford a pale-yellow mixture. The solvent was removed under reduced pressure to give a pale-yellow solid. The solid was re-dissolved in water and added a solution of NH<sub>4</sub>PF<sub>6</sub> (0.17 g 1.0 mmol) in water (5 mL) to give a white solid, which was collected by suction filtration and washed with water. The crude product was recrystallised from an solution in MeCN by diffusion of Et<sub>2</sub>O. Yield: 0.058 g, 85%. Anal. Calcd for [{Pt(bisNHC-C2)}<sub>3</sub>( $\mu_3$ -S)<sub>2</sub>](PF<sub>6</sub>)<sub>2</sub>•Et<sub>2</sub>O (C<sub>34</sub>H<sub>52</sub>F<sub>12</sub>N<sub>12</sub>OP<sub>2</sub>Pt<sub>3</sub>S<sub>2</sub>): C, 25.78; H, 3.31; N, 10.61. Found: C, 25.48; H, 3.15; N, 10.72. <sup>1</sup>H NMR (CD<sub>3</sub>CN, 600 MHz, 298 K): *C*<sub>4</sub> isomer:  $\delta$  7.04 (dd, <sup>3</sup>J<sub>H-H</sub> = 2.0, 2.1 Hz, 4H, im), 7.02–7.01 (m, 4H, im), 6.98 (d, <sup>3</sup>J<sub>H-H</sub> = 2.0 Hz, 2H, im), 6.93 (d, <sup>3</sup>J<sub>H-H</sub> = 2.0 Hz, 2H, im), 5.51–5.34 (m, 6H, N-CH<sub>2</sub>), 4.37–4.30 (m, 6H, N-CH<sub>2</sub>), 3.93 (s, 6H, N-Me), 3.90 (s, 6H, N-Me), 3.65 (s, 6H, N-Me).*C*<sub>3h</sub> isomer:  $\delta$  7.02 (d, <sup>3</sup>J<sub>H-H</sub> = 2.0 Hz, 6H, 4-im), 6.95 (d, <sup>3</sup>J<sub>H-H</sub> = 2.0 Hz, 6H, 5-im), 5.51–5.34 (m, 6H, N-CH<sub>2</sub>), 3.73 (s, 18H, Me). <sup>13</sup>C NMR (CD<sub>3</sub>CN, 150 MHz, 298 K): *C*<sub>8</sub> isomer:  $\delta$  159.0, 158.5, 156.4 (2-1m), 123.1, 122.7, 122.52, 122.47, 122.3, 122.04 (s, 4-1m, 5-1m), 48.99, 48.7, 48.4 (s, N-CH<sub>2</sub>), 39.06, 39.04, 37.9 (s, N-Me). *C*<sub>3h</sub> isomer:  $\delta$  158.1 (2-1m), 122.8 (s, 4-1m), 121.99 (s, 5-1m), 48.5 (s, N-CH<sub>2</sub>), 3.83 (s, N-Me).

#### Synthesis of [Ag{[Pt(bisNHC-C2)]<sub>3</sub>(µ<sub>3</sub>-S)<sub>2</sub>}<sub>2</sub>](PF<sub>6</sub>)<sub>5</sub>

A solution of AgPF<sub>6</sub> (0.0066 g, 0.026 mmol) in MeCN (2 mL) was added to a solution of [{Pt(bisNHC-C2)}<sub>3</sub>( $\mu_3$ -S)<sub>2</sub>](PF<sub>6</sub>)<sub>2</sub> (0.056 g, 0.037 mmol) in MeCN (3 mL). The solution was stirred for 15 min to give a yellow solution.

Diethyl ether (15 mL) was added to the solution to afford a yellow solid, which was collected by suction filtration and washed with diethyl ether. Yield: 0.022 g, 36%. Single crystals suitable for X-ray crystallography were obtained from a solution of a crude product in a mixed solvent of MeCN and MeOH by diffusion of  $Et_2O$ . Anal. Calcd for  $C_{60}H_{84}AgF_{30}N_{24}P_5Pt_6S_4$ : C, 22.02; H, 2.59; N, 10.27. Found: C, 22.09; H, 2.84; N, 10.48.

### 2. X-ray crystallography



Fig. S-1 Atom numbering for [4]<sup>5+</sup>

A single crystal of [4](PF<sub>6</sub>)<sub>6</sub>•2MeOH was mounted on a loop using Paratone. Diffraction data were collected on a Rigaku Varimax Saturn724 diffractometer using a rotation method with 0.5° frame widths. The data were integrated, scaled, sorted, and averaged using the CrystalClear<sup>2</sup> software. Absorption corrections were applied using the multi-scan method. The structures were solved using SHELXS97<sup>3</sup> and refined with SHELXL Version 2018/3<sup>4</sup> using the CrystalStructure software.<sup>5</sup> All hydrogen atoms were located at the calculated positions and refined as riding models. Crystallographic data are summarised in Table S1.

| Formula                               | $C_{62}H_{92}AgF_{30}N_{24}O_2P_5Pt_6S_4$ |  |
|---------------------------------------|-------------------------------------------|--|
| $M_{ m w}$                            | 3337.04                                   |  |
| Crystal description                   | colourless, prism                         |  |
| Crystal size/mm                       | $0.120\times0.097\times0.039$             |  |
| Crystal system                        | triclinic                                 |  |
| Space group                           | P <sup>1</sup> (#15)                      |  |
| a/Å                                   | 13.456(3)                                 |  |
| b/Å                                   | 14.916(3)                                 |  |
| $c/\text{\AA}$                        | 15.624(3)                                 |  |
| $\alpha'^{o}$                         | 66.163(11)                                |  |
| $eta\!/^{ m o}$                       | 71.936(14)                                |  |
| $\gamma^{\prime o}$                   | 73.777(14)                                |  |
| V/Å <sup>3</sup>                      | 2683.8(10)                                |  |
| Ζ                                     | 1                                         |  |
| <i>F</i> (000)                        | 1572.00                                   |  |
| $ ho_{ m calcd}/ m g~cm^{-1}$         | 2.065                                     |  |
| $\mu/\mathrm{mm}^{-1}$                | 8.1874                                    |  |
| Total reflections                     | 21981                                     |  |
| Unique reflections $(R_{int})$        | 11830 (0.0358)                            |  |
| Scan range $\theta/^{\circ}$          | 27.475                                    |  |
| Completeness                          | 0.957                                     |  |
| Index ranges                          | $-14 \le h \le 17$                        |  |
|                                       | $-19 \le k \le 16$                        |  |
|                                       | $-20 \le l \le 20$                        |  |
| Data/restrains/para.                  | 11830/0/595                               |  |
| R1 [I> $2\sigma(I)$ ], wR2 (all data) | 0.0580, 0.1609                            |  |
| GOF on $F^2$                          | 1.010                                     |  |
| Max./min. $\rho/eÅ^{-3}$              | 2.50/-3.28                                |  |
| Min./max. T                           | 0.550/0.727                               |  |

 Table S1. Crystallographic data of triplatinum complex [4](PF<sub>6</sub>)<sub>5</sub>•2MeOH.

| Atoms   | Distance/Å | Atoms   | Distance/Å |
|---------|------------|---------|------------|
| Pt1-Pt2 | 3.1960(9)  | Pt1–Pt3 | 3.1808(9)  |
| Pt2–Pt3 | 3.2327(9)  | Ag1–S1  | 2.349(2)   |
| Pt1–S1  | 2.385(3)   | Pt1–S2  | 2.368(3)   |
| Pt2–S1  | 2.371(3)   | Pt2–S2  | 2.364(3)   |
| Pt3–S1  | 2.377(2)   | Pt3–S2  | 2.364(2)   |
| Pt1–C1  | 1.993(13)  | Pt1–C7  | 1.976(11)  |
| Pt2C11  | 1.979(11)  | Pt2C17  | 2.007(12)  |
| Pt3-C21 | 2.029(12)  | Pt3-C27 | 1.999(10)  |

 Table S2. Selected bond distances for [4](PF<sub>6</sub>)<sub>5</sub>•2MeOH.

| Atoms       | Angle/°    | Atoms       | Angle/°    |
|-------------|------------|-------------|------------|
| Pt2–Pt1–Pt3 | 60.92(2)   | Pt1–Pt2–Pt3 | 59.31(2)   |
| Pt1-Pt3-Pt2 | 59.771(19) |             |            |
| Pt1-S1-Ag1  | 126.26(13) | Pt2–S1–Ag1  | 128.74(13) |
| Pt3-S1-Ag1  | 131.64(10) | S1-Ag1-S1*  | 180.00(14) |
| S1-Pt1-S2   | 77.30(9)   | S1–Pt1–C1   | 100.7(3)   |
| S1–Pt1–C7   | 171.9(4)   | S2–Pt1–C1   | 177.4(3)   |
| S2-Pt1-C7   | 94.6(4)    | C1–Pt1–C7   | 87.3(5)    |
| S1-Pt2-S2   | 77.65(9)   | S1-Pt2-C11  | 101.4(3)   |
| S1-Pt2-C17  | 171.5(3)   | S2-Pt2-C11  | 174.1(3)   |
| S2-Pt2-C7   | 94.5(3)    | C11-Pt2-C17 | 86.7(5)    |
| S1-Pt3-S2   | 77.53(8)   | S1-Pt3-C21  | 100.8(3)   |
| S1-Pt3-C27  | 170.1(3)   | S2-Pt3-C21  | 178.2(4)   |
| S2-Pt3-C27  | 92.7(3)    | C21–Pt3–C27 | 89.0(4)    |
| Pt1-S1-Pt2  | 84.43(7)   | Pt1–S1–Pt3  | 83.81(8)   |
| Pt2-S1-Pt3  | 85.81(8)   | Pt1–S2–Pt2  | 84.99(7)   |
| Pt1–S2–Pt3  | 84.48(9)   | Pt2-S2-Pt3  | 86.28(8)   |

**Table S3.** Selected bond angles for  $[4](PF_6)_5 \bullet 2MeOH$ .

\* Symmetry operation: 2–x, 1–y, –z

3. <sup>1</sup>H NMR spectrum at 253 K and mass spectrum of [2](PF<sub>6</sub>)<sub>2</sub> in the presence of 1 eq. Ag(PF<sub>6</sub>).



Fig. S-2 <sup>1</sup>H NMR spectrum at 253 K of [2](PF<sub>6</sub>)<sub>2</sub> in the presence of 1 eq. Ag(PF<sub>6</sub>).



Fig. S-3 ESI-mass spectrum of  $[2](PF_6)_2$  in the presence of 1 eq. Ag(PF<sub>6</sub>).



Fig. S-4 Expanded ESI-mass signals and their simulated ones of [2](PF<sub>6</sub>)<sub>2</sub> in the presence of 1 eq. Ag(PF<sub>6</sub>).

## 4. References

- Y. Maeda, H. Hashimoto and T. Nishioka, *Chem. Lett.*, 2012, **41**, 145-147; Y. Maeda, H. Hashimoto and T. Nishioka, *Dalton Trans.*, 2012, **41**, 12038-12047.
- 2 *CrystalClear*, Rigaku Corporation, 1999; *CrystalClear Software User's Guide*, Molecular Structure Corporation, 2000; J. W. Pflugrath, *Acta Cryst.*, 1999, **D55**, 1718–1725.
- 3 *SHELXL97*: G. M. Sheldrick, *Program for crystal structure refinement*; University of Göttingen: Göttingen, Germany, 1997.
- 4 G. M. Sheldrick, *Acta Cryst.* 2008, A64, 112-122.
- 5 *CrystalStructure 4.3*: Crystal Structure Analysis Package, Rigaku Corporation (2000–2019), Tokyo 196-8666, Japan.