Supplementary material

Eight coordinated mononuclear dysprosium complexes of heptadentate aminophenol ligands: the influence of the phenol substituents and the ancillary donors on the magnetic relaxation

Matilde Fondo,^{a,*} Julio Corredoira-Vázquez,^a Ana M. García-Deibe,^a Jesús Sanmartín-Matalobos,^a Daniel Reta,^b and Enrique Colacio^c

^a Departamento de Química Inorgánica, Facultade de Química, Universidade de Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain.

^b Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain

^c Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, Avda Fuentenueva s/n, 18071 Granada, Spain

Fig. S1 Comparison of X-powder diffractogram for the crystalline sample of 1Py (blue	line) with the
simulated one from single X-ray data (red line)	page S4
Fig. S2 Ellipsoid (50% probability) diagram for 1Py.	page S4
Fig. S3. Ellipsoid (50% probability) diagram for 2W.2.	page S5
Fig. S4 Ellipsoid (50% probability) diagram for 3M .1.	page S5
Fig. S5 $\chi_M T$ vs T for $1W$ ·0.25MeOH (left) and $2W$ ·(right). Insets: $M/N\mu_B$ vs H. The solid r	red and green
lines (that nearly superimpose) represent the theoretical data obtained from <i>ab inito</i> calc	ulations (with
CASSF-SO methodology) for 1W .1 and 1W .2 or 2W .1 and 2W .2, respectively.	page S6
Fig. S6 Frequency dependence of χ''_{M} at different temperatures in H_{dc} = 0 for 2W	page S6
Fig. S7 Arrhenius plot in H_{dc} = 0 for: left) 1W ·0.25MeOH;. right) 1Py . The red solid lines a	ccount for the
best fit considering only Orbach relaxation (red) in the linear region.	page S6
Fig. S8 Cole–Cole plot for 1W·0.25MeOH (left) and 1Py·(right) in zero field.	page S7
Fig. S9 . Temperature dependence of χ''_{M} at different frequencies in $H_{dc} = 0$ Oe for 1W ·0.2 and 1Py ·(right).	25MeOH (left) page S7
Fig. S10 Field dependence of the magnetic relaxation time at 2.5 K for $1W$ ·0.25MeOH	(left up), 1Py
(right up) and 2W (middle botton).	page S7
Fig. S11 Cole−Cole plot at 1000 Oe dc field for 1W·0.25MeOH (left up), 1Py (right up) an	d 2W (middle
botton).	page S8
Fig. S12 Temperature dependence of c''_{M} at different frequencies in H_{dc} = 1000 Oe for 1	W ∙0.25MeOH
(left up), 1Py ·(right up) and 2W ·(middle bottom).	page S8
Fig. S13 Frequency dependence of c $''_{M}$ at different temperatures in zero dc field for: 1V	V@Y (left up),
1Py@Y (right up) and 2W@Y (middle bottom).	page S9
Fig. S14 Temperature dependence of c''_{M} at different frequencies in H_{dc} = 0 Oe for 1W	/@Y (left up),
1Py@Y (right up) and 2W@Y (middle bottom).	page S9
Fig. S15 T Arrhenius plot in H_{dc} = 0 in H_{dc} = 0 Oe for 1W@Y (left up), 1Py@Y (right up	o) and 2W@Y
(middle bottom).	page S10
Fig. S16. Comparison of crystal (red) and optimized (blue) structures viewed from the	side (left) and
top (right). 1Py, 1W and 2W are shown in top, middle and bottom, respectively.	page S11
Table S1. Crystal data and structure refinement for $1W$ ·0.25MeOH, 1Py, $2W$ ·2	$CH_3C_6H_5$ and
3M ·CH ₃ C ₆ H ₅ .	page S13
Table S2. Main distances (Å) and angles (⁰) for 1W·0.25MeOH, 1Py and 2W·2CH₃C ₆ H₅	page S14
Table S3. SHAPE v2.1. Continuous Shape Measures calculation (c) 2013 Electronic Structure	ucture Group,
Universitat de Barcelona	page S14

Universitat de Barcelona

S2

Table S4. Main distances (Å) and angles ($^{\circ}$) for **3M**·2CH₃C₆H₅.page S15

 Table S5. Generalised Debye model fitting parameters for 1W·0.25MeOH-2W and 1W@Y-2W@Y

 page S16

Table S6. Electronic structure of **1W** complexes calculated with the crystal field parameters obtainedfrom CASSCF-SO at the crystal structure. Each row corresponds to a Kramers doublet. Last columnreports the CASSCF-SO energies.page S20

Table S7. Electronic structure of **1W** complexes calculated with the crystal field parameters obtainedfrom CASSCF-SO at the DFT-optimised structure. Each row corresponds to a Kramers doublet. Lastcolumn reports the CASSCF-SO energies.page S22

Table S8. Electronic structure of **1Py** complex calculated with the crystal field parameters obtainedfrom CASSCF-SO at the crystal structure. Each row corresponds to a Kramers doublet. Last columnreports the CASSCF-SO energies.page S23

Table S9. Electronic structure of **1Py** complex calculated with the crystal field parameters obtainedfrom CASSCF-SO at the DFT-optimised structure. Each row corresponds to a Kramers doublet. Lastcolumn reports the CASSCF-SO energies.page S24

Table S10. Electronic structure of **2W** complexes calculated with the crystal field parameters obtainedfrom CASSCF-SO at the crystal structure. Each row corresponds to a Kramers doublet. Last columnreports the CASSCF-SO energies.page S25

Table S11. Electronic structure of **2W** complexes calculated with the crystal field parameters obtainedfrom CASSCF-SO at the DFT-optimized structure. Each row corresponds to a Kramers doublet. Lastcolumn reports the CASSCF-SO energies.page S28

Table S12. Root mean squared deviation values*, between pairs of crystal and optimized coordinates.page S29

Fig. S1 Comparison of X-powder diffractogram for the crystalline sample of **1Py** (blue line) with the simulated one from single X-ray data (red line).

Fig. S2 Ellipsoid (50% probability) diagram for 1Py.

Fig. S3 Ellipsoid (50% probability) diagram for 2W.2.

Fig. S4 Ellipsoid (50% probability) diagram for 3M.1.

Fig. S5 $\chi_{M}T$ vs T for **1W**·0.25MeOH (left) and **2W** (right). Insets: $M/N\mu_{B}$ vs H at 2 K. The solid red and green lines (that nearly superimpose) represent the theoretical data obtained from *ab initio* calculations (with CASSF-SO methodology) for **1W**.1 and **1W**.2 or **2W**.1 and **2W**.2, respectively.

Fig. S6 Frequency dependence of χ''_{M} at different temperatures in H_{dc} = 0 for **2W**.

Fig. S7 Arrhenius plot in $H_{dc} = 0$ for**1W**·0.25MeOH(left) and**1Py** (right). The red solid lines account for the best fit considering only Orbach relaxation (red) in the linear region.

Fig. S8 Cole–Cole plot for 1W·0.25MeOH (left) and 1Py (right) in zero field.

Fig. S9 Temperature dependence of χ''_{M} at different frequencies in $H_{dc} = 0$ Oe for **1W**·0.25MeOH (left) and **1Py** (right).

Fig. S10 Field dependence of the magnetic relaxation time at 2.5 K for **1W**·0.25MeOH (left up), **1Py** (right up) and **2W** (middle botton).

Fig. S11 Cole–Cole plot at 1000 Oe dc field for **1W**·0.25MeOH (left up), **1Py** (right up) and **2W** (middle bottom).

Fig. S12 Temperature dependence of χ''_{M} at different frequencies in H_{dc} = 1000 Oe for **1W**·0.25MeOH (left up), **1Py**·(right up) and **2W** (middle bottom).

Fig.S13 Frequency dependence of χ''_{M} at different temperatures in zero dc field for: **1W@Y** (left up), **1Py@Y** (right up) and **2W@Y** (middle bottom).

Fig. S14 Temperature dependence of χ''_{M} at different frequencies in $H_{dc} = 0$ Oe for **1W@Y** (left up), **1Py@Y** (right up) and **2W@Y** (middle bottom).

Fig. S15 T Arrhenius plot in $H_{dc} = 0$ Oe for **1W@Y** (left up), **1Py@Y** (right up) and **2W@Y** (middle bottom).

Fig. S16. Comparison of crystal (red) and optimized (blue) structures viewed from the side (left) and top (right). **1Py**, **1W.1**, **1W.2**, **2W.1** and **2W.2** are shown in top, middle and bottom panels, respectively.

	1W ·0.25MeOH	1Ру	$2W \cdot 2CH_3C_6H_5$	3M ·CH ₃ C ₆ H ₅
Empirical formula	C _{27.5} H ₃₀ Br ₃ Cl ₃ DyN ₄ O _{4.25}	$C_{32}H_{32}Br_3Cl_3DyN_5O_3$	$C_{41}H_{45}Br_{3}DyN_{7}O_{10}$	$C_{35}H_{39}Br_3Cl_3N_4O_4Y$
Molecular weight	990.13	1043.20	1198.07	1014.69
Crystal system	Monoclinic	Orthorhombic	Orthorhombic	Orthorhombic
Space group	P21/c	Pna2 ₁	Pbca	P212121
Wavelength (Å)	0.71073	0.71073	0.71073	0.71073
Crystal size (mm ³)	0.178 x 0.087 x 0.022	0.190 x 0.150 x 0.090	0.080x 0.040 x 0.020	0.100x 0.050 x 0.030
Color, shape	Needle, colorless	Prism, yellow	Prism, yellow	Needle, yellow
Т (К)	100(2)	100(2)	100(2)	100(2)
a (Å)	21.7630(9)	11.824(2)	27.713(4)	12.5375(4)
b (Å)	13.3167(5)	21.450(4)	19.006(3)	23.5583(8)
c (Å)	23.8177(10)	13.054(3)	33.722(4)	26.0114(9)
α (º)	90	90	90	90
β (º)	93.015(2)	90	90	90
γ (º)	90	90	90	90
Volume (ų)	6893.1(5)	3310.6(12)	17762(4)	7682.8(4)
Z	4	4	16	8
Absorpt. coef. (mm ⁻¹)	5.918	6.164	4.447	4.891
Reflections collected	30844	65964	278418	108840
Independent reflections	30844	10782 [<i>R</i> _{int} = 0.0380]	18171 [<i>R</i> _{int} = 0.1632]	19076 [<i>R</i> _{int} = 0.1003]
Data / restraints / param.	30844 / 0 / 786	10782 / 1 / 424	18171 / 701 / 1203	19076 / 0 / 909
Final R indices $[I > 2\sigma(I)]$	$R_1 = 0.0855$	$R_1 = 0.0246$	$R_1 = 0.0454$	$R_1 = 0.0455$
	$wR_2 = 0.1775$	$wR_2 = 0.0482$	$wR_2 = 0.0759$	$wR_2 = 0.0835$
R indices (all data)	$R_1 = 0.1550$	$R_1 = 0.0307$	$R_1 = 0.0966$	$R_1 = 0.0743$
	$wR_2 = 0.2129$	$wR_2 = 0.0504$	$wR_2 = 0.0931$	$wR_2 = 0.0934$

Table S1. Crystal data and structure refinement for $1W \cdot 0.25$ MeOH, 1Py, $2W \cdot 2$ CH $_3C_6$ H $_5$ and $3M \cdot$ CH $_3C_6$ H $_5$

	1	N	1Py	20	2W		
	1W .1 (X = 1) 1W .2 (X = 2)		(X = 1)	2W .1 (X = 1)	2W .2 (X = 2)		
DyX-OX1	2.224(10)	2.219(12)	2.223(3)	2.201(4)	2.196(4)		
DyX-OX2	2.217(11)	2.218(11)	2.166(3)	2.245(4)	2.247(4)		
DyX-OX3	2.248(10)	2.237(10)	2.194(3)	2.252(4)	2.263(4)		
DyX-NX1	2.559(11)	2.599(12)	2.512(4)	2.603(5)	2.601(5)		
DyX-NX2	2.508(11)	2.544(13)	2.563(3)	2.537(5)	2.538(5)		
DyX-NX3	2.534(11)	2.582(13)	2.531(4)	2.558(5)	2.573(5)		
DyX-NX4	2.534(11)	2.524(13)	2.445(3)	2.511(5)	2.517(5)		
Dy1-N1			2.651(4)				
DyX-OXw	2.592(12)	2.54(2)		2.460(4)	2.456(4)		
OX1-DyX-NX3	145.8(4)	149.0(4	150.80(11)	149.91(16)	150.27(16)		
OX2-DyX-OX3	149.5(4)	150.8(4)	148.65(11)	148.96(15)	149.11(15)		
NX4-DyX-NX1	147.1(4)	151.8(4)	147.99(11)	148.97(17)	149.87(16)		
NX2-DyX-NX3/	69.3(4)	67.3(4)	66.27(12)	67.79(16)	67.76(16)		
OX1-DyX-OXw	68.2(4)	85.2(6)		82.11(16)	81.82(17)		
OX2-DyX-OXw	71.5(5)	63.7(6)		67.40(15)	67.66(16)		

Table S2. Main distances (Å	Å)	and angles	(º) for	1W-0.25MeOH,	1P'	y and 2W •2CH ₃ C ₆ H ₅
-----------------------------	----	------------	---------	--------------	-----	---

Table S3. SHAPE v2.1. Continuous Shape Measures calculation (c) 2013 Electronic Structure Group, Universitat de Barcelona.

Geometries Coordination number 8

ETBPY-8		13 D3h Elo	ngated trig	gonal bipyr	amid			
TT-8		12 Td Tri	akis tetrah	edron				
JSD-8		11 D2d Sn	ub dipheno	oid J84				
BTPR-8		10 C2v Bia	ugmented	trigonal p	rism			
JBTPR-8		9 C2v Bia	ugmented ⁻	trigonal pr	ism J50			
JETBPY-8		8 D3h Joł	inson elong	gated trian	gular bipyr	amid J14		
JGBF-8		7 D2d Joh	nson gyrob	ifastigium	J26			
TDD-8		6 D2d Tria	angular doo	decahedro	n			
SAPR-8		5 D4d Squ	are antipri	sm				
CU-8		4 Oh Cub	e					
HBPY-8		3 D6h Hex	agonal bip	yramid				
HPY-8		2 C7v Hep	tagonal py	ramid				
OP-8		1 D8h Oct	agon					
		4						
[Dy(3Br,50	$CI-H_3L^{1,1,4}$	^₄)(H₂O)]·0.25	5MeOH (1V	V ·0.25Me0	DH)			
1W .1								
Structure	[ML8]	ETBPY-8	TT-8	JSD-8	BTPR-8	JBTPR-8	JETBPY-8	5
		24.915,	10.098,	2.568,	2.094,	1.73	L , 26.8	83,
JGBF-8	TDD-8	SAPR-8	CU-8	HBPY-8	HPY-8	OP-8		
11.869,	1.906,	1.677,	9.645,	13.967,	22.765,	32.306		
1W .2								
Structure	[ML8]	ETBPY-8	TT-8	JSD-8	BTPR-8	JBTPR-8	JETBPY-8	5
		23.956,	11.400,	2.715,	2.112,	1.85	5 , 26	.310,
JGBF-8	TDD-8	SAPR-8	CU-8	HBPY-8	HPY-8	OP-8		
11.691,	1.961	, 1.914	, 10.	729, 14.	726, 2	2.521, 3	1.063	

 $[Dy(3Br,5Cl-H_3L^{1,1,4})(Py)]$ (**1Py**) Structure [ML8] ETBPY-8 TT-8 JSD-8 BTPR-8 JBTPR-8 JETBPY-8 23.785, 10.518, 2.459, 2.290, 1.723, 26.850. JGBF-8 TDD-8 SAPR-8 CU-8 HBPY-8 HPY-8 OP-8 9.954, 23.528, 29.721 12.033, 2.156, 1.652, 14.853, $[Dy(3NO_2,5Br-H_3L^{1,1,4})(H_2O)]\cdot 2CH_3C_6H_5$ (**2W**·2CH₃C₆H₅) **2W**.1 Structure [ML8] ETBPY-8 TT-8 JSD-8 BTPR-8 JBTPR-8 JETBPY-8 24.200, 10.972, 2.495, 2.158, 1.941, 26.212, JGBF-8 TDD-8 SAPR-8 CU-8 HBPY-8 HPY-8 OP-8 1.661, 10.292, 14.661, 23.358, 31.544 11.959, 1.738, **2W**.2 Structure [ML8] ETBPY-8 TT-8 JSD-8 BTPR-8 JBTPR-8 JETBPY-8 24.214, 10.561, 2.677, 2.053, 1.870, 26.117, JGBF-8 TDD-8 SAPR-8 CU-8 HBPY-8 HPY-8 OP-8 14.590, 12.234, 1.826, 1.620, 9.901, 23.301, 31.318 $[Y(3Br,5Cl-H_3L^{1,1,4})(CH_3OH)] \cdot 2CH_3C_6H_5$ (**3M**·CH₃C₆H₅) **3M**.1 Structure [ML8] ETBPY-8 TT-8 JSD-8 BTPR-8 JBTPR-8 JETBPY-8 23.971, 12.104, 2.182, 2.241, 2.223, 26.466, JGBF-8 TDD-8 SAPR-8 CU-8 HBPY-8 HPY-8 OP-8 11.320, 1.495, 2.035, 11.378, 14.871, 23.005, 31.795 **3M**.2 Structure [ML8] ETBPY-8 TT-8 JSD-8 BTPR-8 JBTPR-8 JETBPY-8 24.984, 9.980, 2.914, 1.836, 1.564, 27.483, JGBF-8 TDD-8 SAPR-8 CU-8 HBPY-8 HPY-8 OP-8 12.522, 2.216, **1.600**, 9.418, 14.089, 22.591, 31.749

Table S4. Main distances (Å) and angles (^o) for **3M**·2CH₃C₆H₅.

3N	1. 1	3M	.2
Y1-011	2.165(5)	Y2-021	2.201(5)
Y1-012	2.245(5)	Y2-022	2.229(5)
Y1-013	2.205(5)	Y2-023	2.233(5)
Y1-01S	2.501(6)	Y2-02S	2.529(5)
Y1-N11	2.597(6)	Y2-N21	2.558(5)
Y1-N12	2.522(6)	Y2-N22	2.508(5)
Y1-N13	2.544(6)	Y2-N23	2.535(6)
Y1-N14	2.544(6)	Y2-N24	2.550(5)
013-Y1-012	149.15(18)	O22-Y2-O23	149.24(16)
012-Y1-01S	64.70(19)	O2S-Y2-N24	68.73(17)

Compounds	<i>Т/</i> К	χs /(cm³mol⁻¹)	χ _T /(cm³mol⁻¹)	τ/(10⁻⁴s)	α
	2.00	0.72	3.04	0.286	0.27
	2.25	0.64	2.70	0.283	0.27
	2.50	0.58	2.53	0.280	0.27
	2.75	0.53	2.20	0.276	0.27
	3.00	0.52	2.01	0.273	0.26
	3.25	0.47	1.86	0.269	0.27
1W-0.25MeOH	3.50	0.46	1.73	0.266	0.27
(H _{dc} = 0 Oe)	3.75	0.43	1.23	0.262	0.27
	4.0	0.44	1.51	0.258	0.27
	4.25	0.41	1.43	0.256	0.27
	4.50	0.40	1.36	0.255	0.27
	4.75	0.39	1.29	0.252	0.27
	5.00	0.38	1.23	0.249	0.27
	2	0.32	6.19	11.56	0.38
	2.5	0.27	4.97	10.64	0.38
	3	0.24	4.15	10.61	0.37
	3.5	0.22	3.55	9.68	0.37
	4	0.20	3.09	9.30	0.36
	4 5	0.19	2 74	8 25	0.36
	5	0.18	2.45	7.67	0.35
	55	0.17	2.13	6.84	0.34
	6	0.16	2.02	6.43	0.33
	65	0.16	1 86	6.03	0.33
	7	0.15	1 71	5.66	0.32
	8	0.15	1 48	5.00	0.30
1Pv	85	0.14	1 39	4 72	0.29
$(H_{dc} = 0 \text{ Oe})$	9	0.14	1 31	4 43	0.28
(1.40 0 0 0)	95	0.14	1 23	4 18	0.27
	10	0.13	1 17	3 94	0.23
	10.5	0.13	1.11	3.70	0.25
	11	0.13	1.06	3.50	0.24
	11.5	0.13	1.01	3.30	0.23
	12	0.13	0.96	3.10	0.22
	12.5	0.13	0.92	2.93	0.21
	13	0.12	0.88	2.77	0.20
	13.5	0.12	0.85	2.61	0.19
	14	0.12	0.82	2.46	0.18
	14.5	0.12	0.79	2.33	0.17
	15	0.12	0.76	2.20	0.16
	8	0.95	1 15	9.94	0.58
	85	0.88	1.15	7 76	0.50
	9	0.81	1.15	5 94	0.55
	95	0.01	1 16	<u> </u>	0.55
	10	0.75	1.10	4.05	0.55
	10 5	0.70	1 17	3 28	0.52
$(H_{4} = 1000 \Omega_{e})$	11	0.03	1 17	2.30	0.30
	11 5	0.02	1 17	2.00	0.45
	17	0.59	1 17	2.30	0.48
	12 5	0.50	1 17	1 70	0.47
	12.5	0.54	1 17	1 / 2	0.40
	12 5	0.01	1 17	1 22	0.45
	12.2	0.49	1.1/	1.22	0.45

Table S5. Generalised Debye model fitting parameters for 1W-0.25MeOH-2W and 1W@Y-2W@Y

	14	0.47	1.17	1.02	0.42
	14.5	0.45	1.17	0.87	0.41
	15	0.43	1.17	0.72	0.41
	15.5	0.42	1.17	0.61	0.40
	16	0.40	1.17	0.49	0.41
	16.5	0.39	1.17	0.405	0.41
	17	0.38	1.16	0.33	0.42
	17.5	0.37	1.16	0.28	0.42
	14	0.34	2.69	15.19	0.15
	14.25	0.28	2.79	14.02	0.21
	14.5	0.32	2.58	12.86	0.15
	14.75	0.28	2.63	11.99	0.20
	15	0.32	2.46	11.11	0.14
	15.25	0.28	2.50	10.36	0.19
	15.5	0.31	2.36	9.67	0.14
	15 75	0.28	2 38	9.07	0.17
	16	0.31	2.30	8 51	0.13
	16.25	0.27	2.27	7 97	0.16
	16.5	0.31	2.18	7.50	0.13
	16 75	0.27	2.18	7.07	0.16
	17	0.30	2.08	6.62	0.11
	17.25	0.27	2.00	6.26	0.15
	17.5	0.30	2.03	5 90	0.10
	17 75	0.27	2.02	5 56	0.14
	18	0.30	1.96	5.23	0.10
	18 25	0.27	1.96	4 93	0.13
	18.5	0.27	1.90	4.55	0.13
	18 75	0.27	1.90	4.85	0.12
	19	0.27	1.50	4.55	0.12
	19 25	0.27	1.83	3 89	0.12
1Pv	19.5	0.26	1 81	3 67	0.11
(H _{de} = 1000 Oe)	19 75	0.26	1 77	3 45	0.11
(1.40	20	0.26	1.75	3.24	0.11
	20.25	0.26	1.73	3.06	0.11
	20.5	0.26	1 69	2.86	0.10
	20.75	0.26	1.67	2.69	0.10
	21	0.26	1.65	2.51	0.10
	21.25	0.26	1.62	2.35	0.10
	21.5	0.26	1.61	2.19	0.10
	21.75	0.26	1.58	2.04	0.09
	22	0.25	1.56	1.89	0.09
	22.5	0.25	1.53	1.63	0.09
	23	0.25	1.49	1.39	0.09
	23.5	0.25	1.45	1.18	0.08
	24	0.25	1.43	0.99	0.09
	24.5	0.25	1.40	0.83	0.10
	25	0.24	1.37	0.69	0.10
	25.5	0.25	1.34	0.60	0.09
	26	0.25	1.31	0.47	0.08
	26.5	0.24	1.29	0.39	0.09
	27	0.25	1.27	0.32	0.08
	27.5	0.23	1.25	0.26	0.09
	28	0.23	1.22	0.22	0.09
	28.5	0.23	1.53	0.18	0.09

	4	0.25	3.19	26.18	0.62
	4 5	0.26	2 84	20.68	0.61
	5	0.27	2.01	14.28	0.60
	55	0.27	2.40	10.66	0.00
	5.5	0.25	2.25	10.00 9.07	0.55
	6.5	0.30	2.02	0.07 E 91	0.58
	0.5	0.31	1.01	5.61	0.57
	/	0.31	1.69	4.79	0.57
	7.5	0.32	1.50	3.78	0.56
	8	0.33	1.45	3.02	0.56
	8.5	0.34	1.35	2.47	0.54
	9	0.34	1.27	2.02	0.54
2W	9.5	0.35	1.19	1.67	0.53
(H _{dc} = 1000 Oe)	10	0.36	1.11	1.40	0.52
	10.5	0.36	1.06	1.19	0.51
	11	0.36	1.07	1.01	0.51
	11.5	0.36	0.97	0.86	0.51
	12	0.36	0.92	0.74	0.50
	12.5	0.37	0.88	0.66	0.49
	13	0.38	0.85	0.58	0.48
	13.5	0.38	0.82	0.51	0.48
	14	0.38	0.79	0.45	0.47
	14.5	0.37	0.76	0.40	0.48
	15	0.38	0.73	0.36	0.46
	15.5	0.38	0.71	0.32	0.45
	16	0.39	0.68	0.30	0.44
	16.5	0.39	0.66	0.27	0.42
	2	0.02	0.65	3 97	0 54
	2.5	0.02	0.53	3.61	0.55
	3	0.02	0.55	3.01	0.55
	35	0.02	0.40	2.84	0.55
	3.5	0.02	0.40	2.64	0.50
	4	0.02	0.35	2.39	0.55
	4.5 E	0.02	0.32	2.52	0.55
		0.03	0.29	2.09	0.55
	5.5	0.03	0.26	1.89	0.55
	0	0.03	0.24	1.72	0.55
1W @Y	0.5	0.03	0.22	1.55	0.54
(H _{dc} = 0 Oe)	/	0.03	0.21	1.38	0.54
	7.5	0.03	0.20	1.27	0.53
	8	0.03	0.19	1.21	0.53
	8.5	0.03	0.17	1.10	0.52
	9	0.03	0.16	1.04	0.50
	9.5	0.03	0.16	0.99	0.50
	10	0.04	0.15	0.90	0.49
	10.5	0.04	0.14	0.86	0.49
	11	0.04	0.14	0.78	0.49
	11.5	0.04	0.13	0.75	0.47
	12.0	0.04	0.13	0.70	0.49
	12.5	0.04	0.12	0.64	0.46
	13	0.04	0.12	0.60	0.47
	13.5	0.04	0.11	0.56	0.47
	14	0.04	0.11	0.51	0.48
	14.5	0.04	0.10	0.46	0.46
	15	0.04	0.09	0.42	0.48

	15.5	0.04	0.09	0.39	0.47	
	16	0.04	0.09	0.36	0.47	
	16.5	0.04	0.09	0.34	0.45	
	3	0.02	0.58	1.37	0.54	
	3.5	0.02	0.50	1.05	0.54	
	4	0.02	0.45	0.92	0.56	
	4.5	0.02	0.40	0.84	0.56	
	5	0.03	0.34	0.75	0.52	
	5.5	0.03	0.32	0.67	0.53	
	6	0.05	0.27	0.60	0.46	
	6.5	0.05	0.22	0.54	0.49	
1Py@1 (H. = 0.0e)	7	0.04	0.25	0.51	0.50	
$(\Pi_{dc} = 0.0e)$	7.5	0.03	0.22	0.48	0.54	
	8	0.03	0.23	0.46	0.53	
	8.5	0.02	0.23	0.43	0.58	
	9	0.04	0.20	0.40	0.49	
	9.5	0.05	0.18	0.39	0.43	
	10	0.04	0.19	0.37	0.54	
	10.5	0.05	0.16	0.35	0.43	
	11	0.04	0.16	0.34	0.48	
	11.5	0.05	0.16	0.33	0.42	
	3.5	0.02	0.29	2.80	0.56	
	4	0.03	0.25	2.58	0.54	
	4.5	0.02	0.24	2.32	0.58	
	5	0.02	0.21	1.90	0.56	
	5.5	0.03	0.19	1.62	0.53	
	6	0.03	0.18	1.41	0.54	
	6.5	0.03	0.18	1.27	0.55	
2 14/@V	7	0.03	0.16	1.14	0.53	
2W@1 (H.=0.0e)	8	0.03	0.19	0.93	0.53	
	8.5	0.03	0.17	0.83	0.53	
	9	0.03	0.16	0.75	0.50	
	9.5	0.03	0.16	0.70	0.50	
	10	0.03	0.15	0.65	0.50	
	10.5	0.04	0.14	0.62	0.49	
	11.5	0.04	0.13	0.56	0.47	
	12.0	0.04	0.12	0.54	0.47	

Table S6. Electronic structure of **1W** complexes calculated with the crystal field parameters obtained from CASSCF-SO at the crystal structure. Each row corresponds to a Kramers doublet.

 Last column reports the CASSCF-SO energies.

Energy (cm ⁻¹)	Energy (K)	g1	g2	g3	Angle	Wavefunction	<jz></jz>	Energy ^{CAS} (cm ⁻¹)	
1W.1									
0.00	0.00	0.00	0.00	19.80		99% ±15/2>	± 7.5	0.00	
202.30	291.06	0.71	1.62	16.83	47.1	$\begin{array}{l} 46\% \pm13/2\rangle +\\ 12\% \pm11/2\rangle +\\ 9\% \pm7/2\rangle +\\ 9\% \pm3/2\rangle +\\ 5\% \pm9/2\rangle +\\ 5\% \pm5/2\rangle +\\ 5\% \pm1/2\rangle +\\ 5\% \mp1/2\rangle \end{array}$	± 4.4	202.42	
264.15	380.05	0.18	1.81	13.21	40.7	$\begin{array}{l} 47\% \pm 13/2\rangle + \\ 10\% \pm 5/2\rangle + \\ 8\% \mp 1/2\rangle + \\ 9\% \pm 1/2\rangle + \\ 8\% \pm 3/2\rangle + \\ 7\% \pm 9/2\rangle \end{array}$	± 3.7	261.71	
399.85	575.29	2.65	4.95	11.16	45.8	$\begin{array}{l} 48\% \pm 11/2\rangle + \\ 13\% \pm 9/2\rangle + \\ 10\% \mp 3/2\rangle + \\ 7\% \mp 1/2\rangle + \\ 6\% \pm 3/2\rangle + \\ 5\% \pm 1/2\rangle \end{array}$	± 3.2	396.76	
492.64	708.79	0.28	6.65	8.44	79.1	$\begin{array}{l} 22\% \pm 11/2\rangle + \\ 19\% \pm 7/2\rangle + \\ 17\% \mp 5/2\rangle + \\ 11\% \mp 1/2\rangle + \\ 8\% \mp 3/2\rangle + \\ 6\% \mp 9/2\rangle \end{array}$	<u>+</u> 1.2	489.54	
558.17	803.07	2.39	3.57	10.60	68.5	38% ±9/2⟩ + 11% ∓7/2⟩ + 15% ∓5/2⟩ + 11% ±11/2⟩	± 1.8	558.62	
620.26	892.41	0.96	2.26	15.53	81.5	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	± 1.1	619.68	

748.16	1076.43	0.05	0.12	19.46 1W	74.8 7 .2	$24\% \pm 3/2\rangle 26\% \pm 5/2\rangle 18\% \pm 7/2\rangle 16\% \pm 1/2\rangle 7\% \mp 1/2\rangle$	+ + +	± 1.9	748.14
0.00	0.00	0.01	0.02	19.81		99% ±15/2>		± 7.5	0.00
187.72	270.09	0.89	1.84	17.54	59.3	29% ±13/2> 12% ±7/2> 13% ±3/2> 9% ±5/2> 10% ±11/2>	+ + +	± 3.5	186.84
251.38	361.68	0.21	2.51	13.19	26.7	63% ±13/2) 8% ±5/2) 6% ±3/2) 6% ±1/2) 6% ∓1/2)	+ + +	± 4.4	249.83
376.64	541.90	3.11	5.93	10.62	45.5	$\begin{array}{c} 45\% \pm 11/2\rangle \\ 14\% \pm 9/2\rangle \\ 9\% \mp 3/2\rangle \\ 7\% \pm 1/2\rangle \\ 5\% \pm 3/2\rangle \\ 1\% \mp 1/2\rangle \end{array}$	+ + + +	± 3.1	373.85
475.09	683.54	0.50	6.31	9.92	79.5	$25\% \pm 11/2\rangle$ $18\% \pm 7/2\rangle$ $12\% \mp 1/2\rangle$ $11\% \mp 3/2\rangle$ $11\% \pm 5/2\rangle$	+ + +	± 1.7	471.67
552.06	794.28	2.54	4.18	9.60	69.0	$30\% \pm 9/2 \rangle 13\% \pm 11/2 \rangle 12\% \pm 3/2 \rangle 11\% \pm 1/2 \rangle 12\% \mp 5/2 \rangle 7\% \mp 3/2 \rangle$	+ + + +	± 1.9	550.96
587.37	845.09	1.90	6.92	12.66	75.6	31% ±7/2) 19% ±9/2) 10% ∓5/2) 8% ±5/2) 10% ±1/2)	+ + +	± 1.8	588.40
716.55	1030.95	0.05	0.12	19.62	75.4	$24\% \pm 3/2\rangle 20\% \pm 5/2\rangle 19\% \pm 1/2\rangle 12\% \mp 1/2\rangle 6\% \mp 3/2\rangle 10\% \pm 7/2\rangle$	+ + + +	<u>+</u> 1.9	716.03

Energy (cm ⁻¹)	Energy (K)	g1	g2	g3	Angle	Wavefunction	<jz></jz>	Energy ^{CAS} (cm ⁻¹)
0.00	0.00	0.03	0.05	19.72		99% ±15/2>	7.4	0.00
106.54	153.28	0.45	0.57	19.23	81.5	$8\% \mp 3/2\rangle + 4\% \pm 11/2\rangle + 9\% \pm 7/2\rangle + 18\% \pm 3/2\rangle + 18\% \pm 3/2\rangle + 10\% \pm 5/2\rangle + 10\% \pm 5/2\rangle + 14\% \pm 1/2\rangle + 19\% \mp 1/2\rangle$	+ + + + + + + +	106.46
213.06	306.54	1.64	2.26	14.83	8.2	86% ±13/2〉 4% ∓1/2〉	⁺ 5.6	212.69
318.82	458.70	1.99	5.40	11.06	71.4	27% ±11/2) 14% ±9/2) 16% ∓3/2) 8% ∓5/2) 7% ∓3/2) 8% ±5/2)	+ + + + 1.7 +	315.62
397.25	571.55	0.54	7.06	8.53	51.3	49% ±11/2) 14% ±5/2) 9% ∓7/2) 7% ±3/2) 7% ∓3/2)	+ + + 2.8 +	397.08
442.20	636.22	2.72	6.00	10.63	66.2	38% ±9/2) 17% ±7/2) 12% ∓7/2) 8% ∓1/2)	+ + + 1.9	441.42
478.70	688.74	1.40	2.25	16.85	84.2	$22\% \pm 3/2\rangle + 14\% \pm 9/2\rangle + 25\% \mp 1/2\rangle + 14\% \mp 3/2\rangle + 14\% \mp 3/2\rangle + 9\% \mp 7/2\rangle + 12\% \pm 5/2\rangle$	+ + + + + +	478.12
625.07	899.33	0.05	0.07	19.52	69.6	20% ±3/2) 27% ±5/2) 24% ±7/2) 13% ±9/2) 9% ±1/2)	+ + + 2.5 +	625.82

Table S7. Electronic structure of **1W** complex calculated with the crystal field parameters obtained from CASSCF-SO at the DFT-optimised structure. Each row corresponds to a Kramers doublet. Last column reports the CASSCF-SO energies.

Table S8. Electronic structure of **1Py** complex calculated with the crystal field parametersobtained from CASSCF-SO at the crystal structure. Each row corresponds to a Kramers doublet.Last column reports the CASSCF-SO energies.

Energy (cm ⁻¹)	Energy (K)	g1	g2	g3	Angle	Wavefunction	<jz></jz>	Energy ^{CAS} (cm ⁻¹)
0.00	0.00	0.01	0.01	19.80		99% ±15/2)	<u>+</u> 7.5	0.00
224.80	323.43	0.29	0.41	16.98	15.7	87% ±13/2⟩ + 8% ±11/2⟩	±6.2	226.04
342.89	493.34	1.05	1.39	15.39	53.6	$24\% \pm 9/2\rangle + 21\% \pm 11/2\rangle + 11\% \pm 5/2\rangle + 9\% \pm 1/2\rangle + 9\% \pm 7/2\rangle$	±3.4	339.23
437.51	629.48	1.46	4.16	11.22	39.3	$\begin{array}{l} 46\% \pm 11/2\rangle + \\ 13\% \pm 7/2\rangle + \\ 10\% \pm 5/2\rangle \\ 9\% \pm 3/2\rangle + \\ 5\% \pm 1/2\rangle \end{array}$	<u>+</u> 3.4	435.75
508.90	732.19	2.83	6.01	12.87	76.5	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	<u>+</u> 1.9	507.41
576.68	829.71	0.94	2.05	13.58	80.1	$\begin{array}{l} 30\% \pm 1/2\rangle + \\ 16\% \mp 1/2\rangle + \\ 11\% \pm 9/2\rangle + \\ 11\% \pm 5/2\rangle + \\ 9\% \mp 3/2\rangle + \\ 6\% \pm 7/2\rangle \end{array}$	±1.0	574.12
647.30	931.32	0.02	0.48	15.69	69.8	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	±2.1	646.89
724.61	1042.54	0.15	0.59	18.33	59.5	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	<u>+</u> 3.5	726.59

Energy (cm ⁻¹)	Energy (K)	g1	g2	g3	Angle	Wavefunction	<jz></jz>	Energy ^{CAS} (cm ⁻¹)
0.00	0.00	0.02	0.03	19.79		99% ±15/2>	<u>+</u> 7.5	0.00
145.75	209.70	0.61	1.02	17.82	54.1	$32\% \pm 13/2\rangle + 13\% \pm 11/2\rangle + 10\% \pm 9/2\rangle + 13\% \pm 7/2\rangle + 9\% \pm 5/2\rangle + 10\% \pm 3/2\rangle$	± 4.0	145.73
225.92	325.05	1.04	2.18	13.26	27.6	$60\% \pm 13/2\rangle$ 9% ± 5/2⟩ + 6% ± 1/2⟩ + 6% ± 3/2⟩	± 4.4	225.51
342.00	492.06	2.96	5.61	10.18	42.5	$48\% \pm 11/2\rangle + 8\% \pm 9/2\rangle + 6\% \pm 3/2\rangle 8\% \mp 3/2\rangle + 8\% \pm 1/2\rangle$	<u>+</u> 3.0	340.20
438.66	631.13	0.89	6.30	9.35	79.0	$\begin{array}{l} 22\% \pm 11/2\rangle + \\ 15\% \pm 7/2\rangle + \\ 13\% \pm 9/2\rangle + \\ 11\% \mp 3/2\rangle + \\ 11\% \mp 1/2\rangle + \\ 10\% \pm 5/2\rangle \end{array}$	± 1.9	437.37
504.83	726.33	0.20	3.96	11.02	77.9	$26\% \pm 9/2 \rangle + 16\% \pm 3/2 \rangle + 15\% \pm 1/2 \rangle + 9\% \mp 1/2 \rangle + 8\% \mp 3/2 \rangle + 8\% \mp 5/2 \rangle$	± 1.3	504.72
539.11	775.66	1.26	3.83	15.32	61.6	$35\% \pm 7/2\rangle +$ $20\% \pm 5/2\rangle +$ $19\% \pm 9/2\rangle +$ $5\% \pm 1/2\rangle +$ $5\% \pm 3/2\rangle$	<u>+</u> 2.7	540.11
612.67	881.48	0.08	0.16	19.56	74.7	$24\% \pm 5/2\rangle +$ $22\% \pm 3/2\rangle +$ $19\% \pm 7/2\rangle +$ $8\% \pm 9/2\rangle$	± 1.9	612.70

Table S9. Electronic structure of **1Py** complex calculated with the crystal field parameters obtained from CASSCF-SO at the DFT-optimised structure. Each row corresponds to a Kramers doublet. Last column reports the CASSCF-SO energies.

Table S10. Electronic structure of **2W** complexes calculated with the crystal field parameters obtained from CASSCF-SO at the crystal structure. Each row corresponds to a Kramers doublet.

 Last column reports the CASSCF-SO energies.

Energy (cm ⁻¹)	Energy (K)	g1	g2	g3	Angle	Wavefunction	<jz></jz>	Energy ^{CAS} (cm ⁻¹)
				21	V.1			
0.00	0.00	0.02	0.03	19.68		97% ±15/2> + 3% ±11/2>	± 7.4	0.00
82.42	118.59	0.20	0.24	19.52	79.6	$18\% \pm 3/2\rangle + 16\% \mp 1/2\rangle + 17\% \pm 1/2\rangle + 13\% \pm 5/2\rangle + 8\% \mp 3/2\rangle + 10\% \pm 7/2\rangle + 6\% \pm 9/2\rangle + $	± 1.3	82.12
180.99	260.40	1.27	2.00	15.40	9.1	$83\% \pm 13/2\rangle + 5\% \pm 11/2\rangle + 2\% \pm 9/2\rangle + 2\% \pm 5/2\rangle$	± 5.8	180.46
256.19	368.59	3.28	6.03	11.33	73.1	$26\% \pm 11/2\rangle +$ $19\% \pm 9/2\rangle +$ $16\% \mp 3/2\rangle +$ $10\% \pm 5/2\rangle$	± 1.9	255.60
330.45	475.44	0.55	4.99	11.87	77.2	$\begin{array}{l} 28\% \pm 11/2\rangle + \\ 17\% \pm 7/2\rangle + \\ 11\% \mp 7/2\rangle + \\ 9\% \pm 9/2\rangle + \\ 8\% \mp 5/2\rangle + \\ 5\% \mp 9/2\rangle + \\ 5\% \pm 1/2\rangle \end{array}$	± 1.7	329.38
383.06	551.13	0.64	2.16	14.99	84.2	$\begin{array}{rrrr} 18\% \pm 1/2\rangle & + \\ 16\% \pm 7/2\rangle & + \\ 15\% \pm 3/2\rangle & + \\ 14\% \mp 5/2\rangle & + \\ 9\% \pm 5/2\rangle & + \\ 9\% \pm 9/2\rangle \end{array}$	± 0.8	381.91
434.97	625.82	0.22	1.16	16.62	52.8	$37\% \pm 9/2\rangle +$ $21\% \pm 11/2\rangle +$ $13\% \pm 7/2\rangle +$ $7\% \mp 1/2\rangle +$ $6\% \pm 13/2\rangle$	<u>+</u> 3.8	434.91
492.62	708.77	0.25	0.63	18.92	74.1	$25\% \pm 5/2\rangle + 23\% \pm 3/2\rangle +$	<u>+</u> 1.9	493.13

						$21\% \pm 7/2 \rangle$ $13\% \pm 1/2 \rangle$	+		
						$7\% \pm 9/2$	•		
				20	J.2	, ,			
0.00	0.00	0.00	0.00	19.74		98% ±15/2) 2% ±11/2)	+	7.2	0.00
168.74	242.77	0.77	1.51	18.30	73.8	$17\% \pm 3/2 \rangle 16\% \mp 1/2 \rangle 11\% \pm 1/2 \rangle 9\% \pm 5/2 \rangle 5\% \mp 3/2 \rangle 11\% \pm 7/2 \rangle 13\% \pm 13/2 \rangle -$	+ + + + +	1.9	168.41
217.38	312.76	0.16	2.13	14.14	12.8	$77\% \pm 13/2\rangle 5\% \mp 1/2\rangle 4\% \pm 9/2\rangle 4\% \pm 5/2\rangle$	+ + +	2.7	217.32
321.68	462.82	4.11	5.97	10.96	71.2	35% ±11/2> 14% ±9/2> 14% ∓3/2> 8% ±5/2> 6% ∓7/2>	+ + +	2.0	321.61
401.16	577.17	0.32	3.61	10.22	87.4	$32\% \pm 11/2\rangle 6\% \pm 7/2\rangle 17\% \mp 7/2\rangle 9% \mp 5/2\rangle 11\% \mp 9/2\rangle 8\% \pm 1/2\rangle$	+ + + +	0.6	399.90
479.94	690.52	1.50	2.19	12.40	68.2	34% ±9/2⟩ 17% ±11/2⟩ 16% ∓7/2⟩ 11% ∓5/2⟩	+ + +	1.8	478.54
546.41	786.15	0.60	1.13	15.82	81.9	$19\% \pm 9/2 \rangle$ $17\% \pm 7/2 \rangle$ $15\% \mp 3/2 \rangle$ $12\% \mp 5/2 \rangle$ $12\% \mp 1/2 \rangle$ $7\% \mp 7/2 \rangle$	+ + + +	0.9	546.72
623.75	897.43	0.08	0.18	19.16	77.8	25% ±3/2) 24% ±5/2) 14% ±7/2) 18% ±1/2) 10% ∓1/2)	+ + +	0.4	624.29

				2W.1 wit	h solven:	t			
0.00	0.00	0.02	0.03	19.68		97% ±15/2) 2% ±11/2)	+	7.4	0.00
72.43	104.21	0.17	0.21	19.55	79.8	$18\% \pm 3/2\rangle 16\% \mp 1/2\rangle 17\% \pm 1/2\rangle 13\% \pm 5/2\rangle 9\% \mp 3/2\rangle 10\% \pm 7/2\rangle 6\% \pm 9/2\rangle +$	+ + + +	1.3	72.10
178.26	256.48	1.42	2.15	15.34	9.5	83% ±13/2> 5% ±11/2> 2% ±9/2> 2% ±5/2>	+ + +	5.8	177.74
249.31	358.70	3.05	6.03	11.29	74.1	24% ±11/2) 19% ±9/2) 16% ∓3/2) 10% ±5/2) 7% ∓7/2)	+ + +	1.8	248.74
324.81	467.33	0.67	5.11	11.83	76.8	$28\% \pm 11/2\rangle 16\% \pm 7/2\rangle 10\% \mp 7/2\rangle 9\% \pm 9/2\rangle 8\% \mp 5/2\rangle 5\% \mp 9/2\rangle 5% \pm 1/2\rangle $	+ + + +	1.7	323.70
377.18	542.67	0.64	2.13	15.06	83.9	18% ±1/2) 16% ±7/2) 15% ±3/2) 14% ∓5/2) 9% ±5/2) 9% ±9/2)	+ + + +	0.8	376.02
429.93	618.56	0.22	1.15	16.65	52.5	37% ±9/2) 21% ±11/2) 13% ±7/2) 7% ∓1/2) 6% ±13/2)	+ + +	3.8	429.88
487.61	701.56	0.25	0.63	18.93	74.1	25% ±5/2) 23% ±3/2) 21% ±7/2) 13% ±1/2) 7% ±9/2)	+ + +	1.9	488.10

Energy (cm ⁻¹)	Energy (K)	g1	g2	g3	Angle	Wavefunction	<jz></jz>	Energy ^{CAS} (cm ⁻¹)
0.00	0.00	0.04	0.07	19.63		96% ±15/2) 3% ±11/2)	+ 7.4	0.00
66.30	95.39	0.31	0.35	19.38	80.7	$18\% \pm 3/2\rangle 18\% \mp 1/2\rangle 17\% \pm 1/2\rangle 11\% \pm 5/2\rangle 8\% \mp 3/2\rangle 9\% \pm 7/2\rangle 5\% \pm 9/2\rangle +$	+ + + + 1.2 +	65.85
173.50	249.63	2.28	2.67	14.54	10.3	80% ±13/2) 5% ±11/2) 4% ∓1/2) 3% ±7/2)	+ + + 5.5	171.94
249.07	358.36	2.38	6.91	10.13	74.1	20% ±11/2) 18% ±9/2) 21% ∓3/2) 13% ±5/2)	+ + + 1.6	245.84
317.86	457.32	0.56	4.03	14.25	73.1	$22\% \pm 11/2\rangle 12\% \pm 7/2\rangle 6\% \mp 7/2\rangle 10\% \pm 9/2\rangle 6\% \pm 1/2\rangle 11\% \pm 5/2\rangle 11\% \pm 3/2\rangle 8\% \mp 1/2\rangle 7\% \mp 3/2\rangle$	+ + + + + 2.0 + +	316.38
338.89	487.59	1.46	2.80	15.78	81.2	28% ±1/2> 15% ±7/2> 9% ±3/2> 6% ∓3/2> 17% ±5/2> 8% ±11/2>	+ + + + 1.0 +	337.73
419.55	603.63	0.16	0.91	17.60	48.8	34% ±9/2> 29% ±11/2> 16% ±7/2> 8% ±13/2>	+ + + 4.4	419.74
472.79	680.23	0.27	0.96	18.82	69.4	23% ±7/2> 23% ±5/2> 19% ±9/2> 16% ±3/2> 7% ±1/2>	+ + + 2.5 +	472.73

Table S11. Electronic structure of **2W** complex calculated with the crystal field parameters obtained from CASSCF-SO at the DFT-optimised structure. Each row corresponds to a Kramers doublet. Last column reports the CASSCF-SO energies.

Table S12. Root mean squared deviation values* in Angstroms between pairs of crystal and optimized coordinates.

1Ру	1W.1	1W.2	2W.1	2W.2						
0.33	0.46	0.47	0.41	0.48						
* calculated following Kabsch algorithm ¹ as implemented by Charnley ² .										

Given the observed dependency of the electronic structure of compounds **1W** and **2W** we have performed gas-phase molecular geometry optimizations on all compounds with Gaussian09d³ suite of programs using the PBE^{4.5} exchange-correlation functional with cc-pVTZ⁶ basis set for all coordinating atoms, cc-pVDZ⁶ for the rest of non-metal atoms, the Stuttgart RSC 1997⁷ effective core potential (ECP) for the 28 core electrons of yttrium and the corresponding valence basis set for the remaining valence electrons, and Grimme's dispersion corrections.⁸⁻¹⁰ To facilitate convergence, dysprosium is substituted by yttrium (where the isotopic mass is set to 162.5, that of the naturally abundant dysprosium), which is justified by their similar ionic radii and the fact that these derivatives are widely found to be structural analogues. Calculation of normal modes was performed by explicit calculation of the Hessian at the optimized geometry, making sure that the forces and displacements are zero and that all frequencies are positive.

- ⁸ S. Grimme, J. Comput. Chem., 2004, **25**, 1463–1473.
- ⁹ S. Grimme, *J. Comput. Chem.*, 2006, **27**, 1787–1799.

¹ W. Kabsch, Acta Crystallog., 1976, A32, 922-923

² http://github.com/charnley/rmsd

³ M. J. Frisch, et al. Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2016

⁴ J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, **77**, 3865–3868.

⁵ J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1997, **78**, 1396–1396.

⁶ T. H. Dunning, J. Chem. Phys., 1989, **90**, 1007–1024.

⁷ J. M. L. Martin and A. Sundermann, *J. Chem. Phys.*, 2001, **114**, 3408–3420.

¹⁰ S. Grimme, *Wiley Interdiscip. Rev. Comput. Mol. Sci.*, 2011, **1**, 211–228.