## Supporting Information

## Highly-stable PEN as gas-barrier substrate for flexible displays via Atomic layer infiltration

Yun Li‡, Di Wen‡, Yinghao Zhang, Yuan Lin, Kun Cao, Fan Yang\* and Rong Chen\*



Figure S1. (a) Structure of PEN repeating units; (b) XRD pattern of the PEN substrate.



**Figure S2.** Characteristics of the ALD and ALI deposited  $Al_2O_3$  films with different process temperatures; (a) growth rate per cycle; (b) mass uptake versus the cycle number on the PEN substrates; (c) refractive indexes versus the wavelength; (d) barrier properties of the PEN substrates with 100 or 200 ALD cycles with different deposition temperatures.

![](_page_1_Figure_0.jpeg)

**Figure S3.** The full scan XPS spectra of the PEN substrate before and after the  $O_2$  plasma pretreatment

![](_page_1_Figure_2.jpeg)

Figure S4. The full scan XPS spectra of the pristine PEN substrate, and the PEN substratesmodifiedwith50ALDorALIcycles.

![](_page_2_Figure_0.jpeg)

**Figure S5.** (a) HR-TEM cross-sectional image of the ALI-infiltrated PEN substrate; EDS mapping of the ALI-infiltrated PEN substrate: (b) carbon; (c) aluminum and (d) oxygen.

![](_page_2_Figure_2.jpeg)

**Figure S6.** Schematic diagram of the different positions for the atomic fraction detection of A1 element

![](_page_2_Figure_4.jpeg)

Figure S7. Photographs showing bending test of the sample with the radius of 5 mm.

![](_page_3_Figure_0.jpeg)

**Figure S8.** Surface topographies of PEN substrate (a) before and (e) after the bending test; PEN substrate coated with 100 ALD cycles (b) before and (f) after the bending test; PEN substrate coated with 200 ALD cycles (c) before and (g) after the bending test; PEN substrate coated with 100 ALI cycles (d) before and (h) after the bending test; O<sub>2</sub> plasma pre-treated PEN substrate (i) before and (l) after the bending test; O<sub>2</sub> plasma pre-treated PEN substrate coated with 100 ALD cycles (j) before and (m) after the bending test; O<sub>2</sub> plasma pre-treated PEN substrate coated with 100 ALD cycles (k) before and (n) after the bending test; O<sub>2</sub> plasma pre-treated PEN substrate coated with 100 ALD cycles (k) before and (n) after the bending test; O<sub>2</sub> plasma pre-treated PEN substrate coated with 100 ALD cycles (k) before and (n) after the bending test.

![](_page_3_Figure_2.jpeg)

**Figure S9.** AFM line scan height tests of PEN substrate (a) before and (e) after the bending test; PEN substrate coated with 100 ALD cycles (b) before and (f) after the bending test; PEN substrate coated with 200 ALD cycles (c) before and (g) after the bending test; PEN substrate coated with 100 ALI cycles (d) before and (h) after the bending test; O<sub>2</sub> plasma pre-treated PEN substrate (i) before and (l) after the bending test; O<sub>2</sub> plasma pre-treated PEN substrate coated with 100 ALD cycles (j) before and (m) after the bending test; O<sub>2</sub> plasma pre-treated PEN substrate coated with 100 ALD cycles (j) before and (m) after the bending test; O<sub>2</sub> plasma pre-treated PEN substrate coated with 100 ALD cycles (k) before and (n) after the bending test.

![](_page_4_Figure_0.jpeg)

**Figure S10.** FE-SEM photographs of the PEN substrates modified with different processes before and after the bending fatigue tests with the radius of 5 mm.

![](_page_4_Figure_2.jpeg)

Figure S11. Schematic diagram of the encapsulation of OLED devices.

|                 |                                        | Deposition Temperature (°C) |                      |                      |                      |
|-----------------|----------------------------------------|-----------------------------|----------------------|----------------------|----------------------|
| Cycle<br>number | O <sub>2</sub> plasma<br>Pre-treatment | 75                          | 85                   | 95                   | 105                  |
| 100             | W/O                                    | $(1.05 \pm 0.01)*10^{-1}$   | $(8.83 \pm 0.19)*10$ | $(2.98 \pm 0.45)*10$ | $(2.07 \pm 0.47)*10$ |
|                 | W                                      | $(1.99 \pm 0.20)*10^{-3}$   | $(1.82 \pm 0.30)*10$ | $(1.78 \pm 0.23)*10$ | $(1.63 \pm 0.59)*10$ |
| 200             | W/O                                    | $(3.34 \pm 0.03) * 10^{-2}$ | $(8.93 \pm 0.31)*10$ | $(7.54 \pm 1.22)*10$ | $(5.88 \pm 1.33)*10$ |

Table S1. WVTR values (g/m<sup>2</sup>/day) of ALD-modified PEN substrates in the controlled environment of  $60^{\circ}C/90\%$  RH

Table S2. Atomic concentrations (%) obtained from X-ray photoelectron spectroscopy survey scans of PEN substrates before and after the  $O_2$  plasma pre-treatment

| Atomic concentrations (%) | Pristine PEN O <sub>2</sub> plasma pre-treated PI |      |
|---------------------------|---------------------------------------------------|------|
| C 1s                      | 81.4                                              | 68.9 |
| O 1s                      | 18.6                                              | 31.1 |

## Table S3. WVTR values (g/m<sup>2</sup>/day) of PEN substrates modified with 100 ALI cycles in the controlled environment of 60°C/90% RH

|                     |     | Deposition Temperature (°C) |                      |                      |                           |
|---------------------|-----|-----------------------------|----------------------|----------------------|---------------------------|
|                     |     | 75                          | 85                   | 95                   | 105                       |
| Holding<br>time (s) | 30  | -                           | -                    | $(4.92 \pm 1.01)*10$ | -                         |
|                     | 60  | $(1.08 \pm 0.24)*10$        | $(6.22 \pm 2.51)*10$ | $(4.45 \pm 0.93)*10$ | $(3.82 \pm 0.50)*10^{-3}$ |
|                     | 90  | -                           | -                    | $(3.40 \pm 0.74)*10$ | -                         |
|                     | 120 | -                           | -                    | $(3.26 \pm 0.51)*10$ | -                         |

Table S4. Atomic fraction of Al element in different depths

| Depth (nm) | Atomic fraction (%) | Error (%) |
|------------|---------------------|-----------|
| 0          | 27.4                | 6.76      |
| 49.94      | 6.85                | 1.46      |
| 391.2      | 0.13                | 0.05      |
| 678.4      | 0.11                | 0.05      |
| 907.3      | 0.08                | 0.14      |

| Stratures     | Roughness (nm) |               | WVTR value (g/m <sup>2</sup> *day) |                            |
|---------------|----------------|---------------|------------------------------------|----------------------------|
| Structures    | Before bending | After bending | Before bending                     | After bending              |
| Pristine PEN  | 0.753          | 0.834         | 4.45±0.33*10 <sup>-1</sup>         | -                          |
| PEN/P         | 4.195          | 4.250         | -                                  | -                          |
| 100 ALD/PEN   | 0.602          | 0.645         | 2.98±0.45*10 <sup>-2</sup>         | -                          |
| 200 ALD/PEN   | 0.446          | 0.570         | 7.54±1.22*10 <sup>-3</sup>         | $1.04 \pm 0.28 * 10^{-1}$  |
| 100 ALI/PEN   | 0.592          | 0.644         | 3.40±0.74*10 <sup>-3</sup>         | 7.61±2.13*10 <sup>-3</sup> |
| 100 ALD/PEN/P | 2.695          | 2.730         | 1.78±0.23*10 <sup>-3</sup>         | 4.24±0.53*10 <sup>-3</sup> |
| 100 ALI/PEN/P | 2.947          | 3.137         | 3.20±0.80*10 <sup>-4</sup>         | 2.07±0.31*10-3             |

 Table S5. Properties of modified and unmodified PEN substrates before and after the bending fatigue test

Notes: P means the " $O_2$  plasma pre-treatment", all the deposition temperature was set as 95°C, and the holding time in the ALI method was set as 90 s. The WVTR values were evaluated in the controlled environment of 60°C/90% RH.