Size controlled Silver Nanoparticles on β -cyclodextrin/Graphitic Carbon Nitride:

An excellent nanohybrid material for SERS and Catalysis Applications

S. Santhoshkumar and E. Murugan*

Department of Physical Chemistry, School of Chemical Science, University of Madras, Guindy Campus, Guindy, Chennai-25.

*Corresponding Author E.mail ID: <u>dr.e.murugan@gmail.com</u>

Fig. S1. a and b HRTEM images of AgNPs/g-CN (various parts)

Raman peaks for	SERS peaks for	Vibrational Peak Assignments	
MG (cm ⁻¹)	MG (cm ⁻¹)		
1616	1618	N-Ph ring + C-C str	
1597	1595	In plane ring str + bend	
1493	1493	NH ₂ bend	
1425	1400	NH ₂ bend	
1374	1374	CH ₂ bend	
1355	1368	N-Ph ring str	
1275	1298	Rocking of C-H	
-	1174	In-plane C-H bending	
871	-	C-H bend of benzene ring	
772	-	NH ₂ bend. Torsion	
733	735	In plane ph ring $+ NH_2 str$	
532	532	In plane ph ring def	
416	419	Out of plane ph ring def	

Table. S1. Raman and SERS peak assignments for MG

		AEF of MG on AgNPs/β-CD/g-CN-NH SERS Peak Positions			
S.No	-log[MG] M				
		1174 cm ⁻¹	1400 cm ⁻¹	1618 cm ⁻¹	
1	3	3.76×10^{2}	2.34×10^2	3.13×10^{2}	
2	4	2.65×10^3	1.56×10^{3}	1.90×10^3	
3	5	1.94×10^4	$1.14 imes 10^4$	1.41×10^4	
4	6	1.23×10^5	$7.34 imes 10^4$	9.22×10^4	
5	7	8.05×10^5	4.79×10^5	5.88×10^5	
6	8	4.04×10^{6}	$2.50 imes 10^6$	3.10×10^6	
7	9	7.26×10^6	$7.07 imes 10^6$	$6.73 imes 10^6$	

Table. S2. AEF for SERS spectra of different concentrations of MG on AgNPs/β-CD/g-CN-NH

Fig S 2. MV-g-CN, MV-AgNPs, MV-AgNPs/g-CN and MV-AgNPs/ β -CD/g-CN (down to up) b) SERS sensing of MV in the concentration range between 1×10^{-3} to 1×10^{-7} M on AgNPs/ β -CD/g-CN, and c) Plot of intensity at 1174, 1400 and 1622 cm⁻¹ vs -log[MV]

Raman peaks for	SERS peaks for MV	Vibrational Assignments
MV (cm ⁻¹)	(cm ⁻¹)	
1622	1622	N-Ph ring + C-C str
1543	1543	In plane ring str
1501	1504	C-C-ring
1441	1446	C-C ring, CH ₂ bend
1396	1400	C=N
1355	1368	N-Ph ring str, CH ₂ bend
1215	1219	In plane C-H and C-C-H
-	1174	Ph ring bent vib
986	988	C-H bend of benzene ring
926	926	=CH bend
810	810	In plane ph ring
532	532	In plane ph ring def
422	422	Out of plane ph ring torsion vib

Table. S3. Assignment of Raman and SERS peaks of MV

Table. S4. AEF for SERS spectra of different concentrations of MV on AgNPs/β-CD/g-CN-NH

S No -log(MV1 M AEF of AgNPs/β-CD/g-CN-NH

		1174 cm ⁻¹	1400 cm ⁻¹	1622 cm ⁻¹
1	3	3.29×10^{2}	2.04×10^{2}	3.71×10^{2}
2	4	1.62×10^{3}	8.10×10^{3}	1.45×10^{3}
3	5	6.08×10^{3}	4.24×10^{3}	6.91×10^{3}
4	6	1.40×10^{4}	1.47×10^{4}	2.16×10^{4}
5	7	4.81×10^{4}	9.14×10^{4}	$8.85 imes 10^4$

Fig 3 S. Catalytic activity of g-CN+NaBH₄, NaBH₄, AgNPs+NaBH₄ and AgNPs/g-CN+ NaBH₄ for the reduction of EY

Fig 4 S a) Plot of A_t/A₀ vs Reaction Time (min) b) The kinetic plot of ln(A_t/A₀) vs Time (min) for the catalytic reduction of CR using AgNPs/β-CD/g-CN-NH catalyst