Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2021

Supporting Information for

Carbazole modification of Ruthenium Bipyridine–dicarboxylate Oxygen Evolution Molecular Catalyst

Hiroki Otsuka,^a Atsushi Kobayashi,^{*,a} Masaki Yoshida, ^a and Masako Kato^{a,b}

^aDepartment of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo 060-0810, Japan

^bDepartment of Applied Chemistry for Environment, School of Biological and Environmental Sciences, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan.

Contents

Figure S1. UV-Vis absorption spectra of C0, C1 and C2
Figure S2. DPV curves of complexes C0 and C0-Br
Figure S3. Cyclic voltammograms of C0, C1, C2, and cbz-py4
Figure S4. Changes of cyclic voltammograms during potential sweep cycles of C1 and C25
Table S1. MO energies of each complex6
Figure S5. Comparison with experimental spectra in dichloromethane/methanol ($v/v=9/1$) and
simulated absorption spectra by TD-DFT calculations of C0, C1 and C27
Table S2. Wavelength, oscillator strength and contributions of major spin-allowed transitions of
C0
Figure S6. Schematic molecular orbital diagrams and orbital shapes of $\mathbf{C0}$ in the ground S_0 state9
Table S3. Wavelength, oscillator strength and contributions of major spin-allowed transitions of
C110
Figure S7. Schematic molecular orbital diagrams and orbital shapes of $C1$ in the ground S_0 state11
Table S4. Wavelength, oscillator strength and contributions of major spin-allowed transitions of
C212
Figure S8. Schematic molecular orbital diagrams and orbital shapes of $C2$ in the ground S_0 state13
Figure S9. Chemical OER plot of C0, C1, and C2 under [CAN] range from 60 to 120 mM14
Figure S10. [Cat.] dependence of OER rate15
Figure S11. MALDI-MS spectra of the extract from the reaction mixture of C116
Figure S12. Photochemical OER plots of C2 without [Ru(bpy) ₃] ²⁺ 16
Figure S13. Photochemical OER plot of C0 in the presence of 2 eq. of cbz-H17
Figure S14. UV-Vis absorption spectra of reaction mixture after 1 h photolysis for C2, C1 and C017
Figure S15. Photochemical OER plots of C0, C1 and C2 with Co ^{III} oxidant

Figure S16. ¹ H NMR spectra of C1 and C2	.19
Table S5. Crystallographic parameters of C2·2CH2Cl2	20
Figure S17. ORTEP drawings of. C2·2CH ₂ Cl ₂	21

Figure S1. UV-Vis absorption spectra of C0 (black), C1 (blue) and C2 (red). (10 μ M, HClO₄ aq. (pH = 1.0)/TFE/acetonitrile (v/v/v=3/2/1))

Figure S2. DPV curves of complexes **C0** (black), **C0-Br** (brown) in pH = 1.0 HClO₄ aq. /2,2,2-trifluoroethanol(TFE)/ acetonitrile (v/v/v = 3/2/1) containing 0.1 M NaClO₄. Scan rate: 10 mVs⁻¹. * and ** are denoted as a redox peak of Ru^{III/II} and Ru^{IV/III}, respectively.

Figure S3. Cyclic voltammograms of **C0**, **C1**, **C2**, and cbz-py in (a) dichloromethane/TFE(v/v=9/1) (200 μ M, scan rate 100 mVs⁻¹) and (b) HClO₄ aq. (pH = 1.0)/TFE/acetonitrile (v/v/v=1/2/1) (200 μ M, scan rate 100 mVs⁻¹).

Figure S4. Changes of cyclic voltammograms during potential sweep cycles of (a) C1 (1- 50^{th} cycles) and (b) C2 (1- 5^{th} cycles). (200 μ M, 0.1 M NaClO₄ solution of HClO₄ aq(pH=1.0)/TFE/acetonitrile (v/v/v=1/2/1) mixture).

	C0 (eV)	C1 (eV)	C2 (eV)
LUMO+6			-0.9293
LUMO+5	-0.7301	-0.9178	-0.9301
LUMO+4	-1.2849	-1.3331	-1.4504
LUMO+3	-1.3396	-1.4468	-1.4803
LUMO+2	-1.5543	-1.5856	-1.6172
LUMO+1	-1.8071	-1.8381	-1.8653
LUMO	-2.3301	-2.3535	-2.3742
НОМО	-4.8747	-4.9008	-4.9247
HOMO-1	-5.2055	-5.2211	-5.2311
НОМО-2	-5.4483	-5.4426	-5.4347
НОМО-3	-6.1620	-5.8314	-5.8249
HOMO-4	-6.2350	-6.0760	-5.8630
HOMO-5	-6.6034	-6.1933	-6.0875
HOMO-6	-6.7389		-6.0875

Table S1. MO energies of each complex estimated by DFT calculation.

Figure S5. Comparison with (top) experimental spectra in dichloromethane/methanol (v/v=9/1) and (bottom) simulated absorption spectra by TD-DFT calculations of C0 (black), C1 (blue) and C2 (red). The values of calculated oscillator strength are plotted as bar charts.

No.	λ (nm)	f	Contr	ributions	(%)	Assignment
1	507.05	0.0216	НОМО-2	->LUMO	77	$MI \subset T : D_{-}(J) > 1 J_{-}(-*)$
1	507.05	0.0310	HOMO-1	->LUMO+2	15	MLC1 : $Ru(d) \rightarrow bda(\pi^*)$
2	460.21	0.0338	HOMO-1	->LUMO+1	93	MLCT : $\operatorname{Ru}(d) \rightarrow \operatorname{bda}(\pi^*)$
			НОМО-2	->LUMO+1	7	
3	405.18	0.0547	HOMO-1	->LUMO+2	55	$MLCT : Ru(d) \rightarrow bda(\pi^*) + py(\pi^*)$
			HOMO-1	->LUMO+4	30	
			НОМО-2	->LUMO+2	14	
4	402.22	0.0476	НОМО-2	->LUMO+4	11	
4	403.22	0.04/6	HOMO-1	->LUMO+3	60	$MLC1 : Ru(d) \rightarrow py(\pi^*)$
			НОМО	->LUMO+9	11	
			НОМО-2	->LUMO+2	47	
5	396.85	0.0300	HOMO-1	->LUMO+3	27	MLCT : $\operatorname{Ru}(d) \rightarrow \operatorname{bda}(\pi^*)$
			НОМО	->LUMO+9	20	
			НОМО-2	->LUMO	7	
	6 390.99 0	0.0262	НОМО-2	->LUMO+1	6	
ſ			НОМО-2	->LUMO+3	48	
0			HOMO-1 ->LUMO+2 10	MLC1 : $\operatorname{Ru}(d) \rightarrow \operatorname{py}(\pi^*)$		
			HOMO-1	->LUMO+4	20	
			НОМО	->LUMO+8	6	
7	200 7	0.0225	НОМО-2	->LUMO+2	29	
/	388.7	0.0335	НОМО	->LUMO+9	60	$MC : Ru(d) \rightarrow Ru(d)$
			НОМО-2	->LUMO+4	71	
8	367.63	0.0802	HOMO-1	->LUMO+3	8	MLCT : $\operatorname{Ru}(d) \rightarrow \operatorname{py}(\pi^*)$
			НОМО	->LUMO+6	18	
0	250.05	0.0604	НОМО-2	->LUMO+4	4 14 NH CT. D (1) (1)	$M(CT, Dr(J) > rr(-\psi)$
9	339.95	0.0694	HOMO	->LUMO+6	78	MILCI : $Ku(a) \rightarrow py(\pi^*)$
10	220 10	0.0240	HOMO-6	->LUMO	85	$I(C, hdo(\pi)) > hdo(\pi^*)$
10	JJU.48	0.0349	HOMO-1	->LUMO+6	8	LC : $\operatorname{Dda}(\pi) \rightarrow \operatorname{Dda}(\pi^*)$

Table S2. Wavelength, oscillator strength (f), and contributions of major spin-allowed transitions (f > 0.01) of **C0**.

Figure S6. Schematic molecular orbital diagrams and orbital shapes of C0 in the ground S_0 state.

No.	λ (nm)	f	Contributions ^{<i>a</i>}		(%)	Assignment		
1	510.05	0.0200	НОМО-2	->LUMO	76			
1	510.05	0.0390	HOMO-1	->LUMO+2	12	MLC1 : $\operatorname{Ku}(d) \rightarrow \operatorname{bda}(\pi^*)$		
2	461.48	0.0371	HOMO-1	->LUMO+1	93	$MLCT : Ru(d) \rightarrow bda(\pi^*)$		
2	414.25	0 1252	HOMO-1	->LUMO+2	45	MLCT :		
3	414.35	0.1255	HOMO-1	->LUMO+3	38	$\operatorname{Ru}(d) \rightarrow \operatorname{bda}(\pi^*) + \operatorname{cbz-py}(\pi^*)$		
			НОМО-3	->LUMO	10			
			НОМО-2	->LUMO+3	10			
4	405.51	0.0342	HOMO-1	->LUMO+2	17	MLCT : Ru(d) -> cbz-py(π^*)		
			HOMO-1	->LUMO+3	21			
			HOMO-1	->LUMO+4	23			
			НОМО-3	->LUMO	48			
5	402.61	0.0252	HOMO-2	->LUMO+2	10	LLCT : $cbz-py(\pi) \rightarrow bda(\pi^*)$		
			HOMO-1	->LUMO+4	21			
			НОМО-3	->LUMO	9			
			HOMO-2	->LUMO+2	45			
6	6 399.34 0.023	0.0257	HOMO-1	->LUMO+3	8	MLCI:		
			HOMO-1	->LUMO+4	7	$\operatorname{Ru}(d)$ + $\operatorname{bda}(\pi) \rightarrow \operatorname{bda}(\pi^*)$		
			НОМО	->LUMO+11	23			
			НОМО-3	->LUMO	26			
7	204.44	0.0452	HOMO-2	->LUMO+3	33			
/	374.44	0.0433	HOMO-1	->LUMO+2	6	MLC1 : $Ru(d) \rightarrow cbz-py(\pi^*)$		
			HOMO-1	->LUMO+4	16			
0	200.55	0.0222	НОМО-2	->LUMO+2	27			
8	390.55	0.0323	НОМО	->LUMO+11	59	$MC : Ru(d) \rightarrow Ru(d)$		
			HOMO-2	->LUMO+3	15			
9	9 376.75 0.05	0.0559	HOMO-2	->LUMO+4	16	MLCT : Ru(d) -> cbz-py(π^*)		
			НОМО	->LUMO+6	58			
			HOMO-2	->LUMO+4	44			
10	372.95	372.95	372.95	0.1714	HOMO-1	->LUMO+3	6	
			HOMO	->LUMO+6	36	$\operatorname{Ku}(d) \rightarrow \operatorname{py}(\pi^*) + \operatorname{cbz-py}(\pi^*)$		
11	363.07	0.0363	НОМО	->LUMO+7	90	MLCT : $\operatorname{Ru}(d) \rightarrow \operatorname{py}(\pi^*)$		

Table S3. Wavelength, oscillator strength (*f*), and contributions of major spin-allowed transitions (f > 0.01) of **C1**.

			HOMO-7	->LUMO	8	
12	344.82	0.0275				LLCT : $cbz-py(\pi) \rightarrow bda(\pi^*)$
			HOMO-3	->LUMO+1	77	

^{*a*}Minor contributions (< 5%) are omitted.

Figure S7. Schematic molecular orbital diagrams and orbital shapes of C1 in the ground S_0 state.

No.	λ (nm)	f	Contributions ^a		(%)	Assignment
			НОМО-2	->LUMO	72	
1	510 77	0.0295	HOMO-1	->LUMO+2	10	MICT D (1) > 11 (-*)
1	512.77	0.0385	HOMO-1	->LUMO+4	7	$MLC1 : Ru(d) \rightarrow bda(\pi^*)$
			НОМО	->LUMO+2	6	
2	475.38	0.0189	НОМО	->LUMO+3	94	MLCT : $Ru(d) \rightarrow cbz - py(\pi^*)$
3	463.32	0.0441	HOMO-1	->LUMO+1	93	MLCT : $\operatorname{Ru}(d) \rightarrow \operatorname{cbz-py}(\pi^*)$
			НОМО-2	->LUMO+1	6	
4	416.39	0.0664	HOMO-1	->LUMO+2	68	$MLCT : Ru(d) \rightarrow bda(\pi^*)$
			HOMO-1	->LUMO+4	19	
5	414 40	0 1011	НОМО-2	->LUMO+4	8	$\mathbf{M} = \mathbf{C} \mathbf{T} \cdot \mathbf{D} (1) > 1 (-\mathbf{y})$
3	414.49	0.1811	HOMO-1	->LUMO+3	81	MLC1 : $Ru(a) \rightarrow cbz-py(\pi^*)$
			HOMO-4	->LUMO	34	
(105 51	0.0120	НОМО-2	->LUMO	10	LLC1 : $cbz-py(\pi) \rightarrow bda(\pi^*)$
6	0 405.54	0.0130	НОМО-2	->LUMO+3	20	mixed with $M(CT, \mathbf{P}_{1}(1)) > 1$ (-*)
			HOMO-1	->LUMO+4	22	MLC1 : $Ru(a) \rightarrow cbz-py(\pi^*)$
7	403.66	0.0125	НОМО-3	->LUMO	92	LLCT : $cbz-py(\pi) \rightarrow bda(\pi^*)$
			НОМО-2	->LUMO+2	60	
8	401.23	0.0229	HOMO-1	->LUMO+3	6	$MLCT : Ru(d) \rightarrow bda(\pi^*)$
			НОМО	->LUMO+13	20	
0	205 52	0.0226	HOMO-4	->LUMO	57	
9	595.52	0.0250	НОМО-2	->LUMO+3	28	LLC1 : $coz-py(\pi) \rightarrow bda(\pi^+)$
10	200.99	0.0222	НОМО-2	->LUMO+2	19	$MC \cdot Dr(d) > Dr(d)$
10	390.88	0.0332	НОМО	->LUMO+13	65	$MC : Ku(d) \rightarrow Ku(d)$
			НОМО-2	->LUMO+2	6	
11	383.99	0.3667	НОМО-2	->LUMO+4	82	MLCT : $Ru(d) \rightarrow cbz - py(\pi^*)$
			HOMO-1	->LUMO+3	6	
12	371.75	0.0802	НОМО	->LUMO+8	96	MLCT : Ru(d) -> cbz-py(π^*)
13	347.08	0.0560	НОМО-3	->LUMO+1	90	LLCT : $cbz-py(\pi) \rightarrow bda(\pi^*)$
-						

Table S4. Wavelength, oscillator strength (*f*), and contributions of major spin-allowed transitions (f > 0.01) of **C2**.

^{*a*}Minor contributions (< 5%) are omitted.

Figure S8. Schematic molecular orbital diagrams and orbital shapes of C2 in the ground S_0 state.

Figure S9. [Cat.] dependency of OER rate (= Evolved O_2 amount / Time) (Estimated from TOF_{max}).

Figure S10. Chemical OER plots of (a) C0 (b) C1 (c) C2(50 μ M) under [CAN] = 60-120 mM. [CAN] = 120 mM (bold lines), 90 mM (dashed lines) and 60 mM (dotted lines). Purple dashed lines in each panel show the calculated O₂ amounts based on the amount of one-electron oxidant CAN.

Figure S11. MALDI-MS spectra of the extract from the reaction mixture of C1 ([C1] = 25 μ M, [CAN] = 120 mM, in pH = 1.0 HClO₄ aq./TFE/acetonitrile (v/v/v = 3/2/1)) by CH₂Cl₂. The spectrum without the extract was shown as black solid line. The inset is the magnification of the peak assignable to a Ru-containing species. The exact structure of this species is unclear, but the mass is larger than that of [Ru(bda)(py)₂]⁺ (m/z = 502), implying the coordination of cbz-py ligand to the Ru-bda unit. No significant peak at m/z ~ 250 assignable to the dissociated cbz-py species was observed.

Figure S12. Photochemical OER plots of C2 (10 μ M) without [Ru(bpy)₃]²⁺ in borate buffer (10 mM, pH = 8.0) aq./TFE /acetonitrile (v/v/v = 3/2/1). [Cat.] = 10 μ M, [Na₂S₂O₈] = 5 mM, λ = 470 nm, 30 mWcm⁻².

Figure S13. Photochemical OER plots of C0 (10 μ M) with cbz-H (20 μ M) adduct.

Figure S14. UV-Vis absorption spectra of reaction mixture after 1 h photolysis (solid line, red : **C2**, blue : **C1**, black : **C0** and no catalyst : gray. Diluted 10th fold.)and 20 μ M[Ru(bpy)₃]²⁺ soln. (gray, dashed line, pH=8.0, bubbled for 30 min and stated in the dark for 1 h).

Figure S15. Photochemical OER plots of complexes C0 (black), C1 (blue) and C2 (red) with Co^{III} oxidant in acetate buffer (40 mM, pH=5.0) aq. / TFE / acetonitrile (v/v/v = 3/2/1). [Cat.] = 10 μ M, [Ru(bpy)₃]²⁺ = 200 μ M, ([CoCl(NH₃)₅]²⁺ = 4 mM, λ = 470 nm, 30 mWcm⁻².

Figure S16. The aromatic region of ¹H NMR spectra of (a) C1 and (b) C2. (400 MHz, CD_2Cl_2 /methanol- d_4 with a small amount of L-ascorbic acid)

(a)

Complex	$C2 \cdot 2CH_2Cl_2$
<i>T</i> / K	150
Formula	$\mathrm{C}_{46}\mathrm{H}_{30}\mathrm{N}_{6}\mathrm{O}_{4}\mathrm{Ru} \boldsymbol{\cdot} 2\mathrm{CH}_{2}\mathrm{Cl}_{2}$
Formula weight	1001.68
Crystal system	monoclinic
Space group	$P2_{1}/n$
<i>a</i> / Å	8.08230(10)
<i>b</i> / Å	25.8123(5)
<i>c</i> / Å	20.3078(3)
α / deg.	90
eta / deg.	93.8950(10)
γ / deg.	90
$V/\text{\AA}^3$	4226.88(12)
Ζ	4
$D_{\rm cal}$ / g×cm ⁻³	1.574
Reflections collected	32223
Unique reflections	8639
GOF	1.100
$R_{\rm int}$	0.0570
<i>R</i> (I > 2.00s(I))	0.0648
$R_W^{\ a}$	0.1679

Table S5. Crystallographic parameters of. $C2 \cdot 2CH_2Cl_2$.

^a $R_w = [\Sigma(w(F_o^2 - F_c^2)^2)/\Sigma w(F_o^2)^2]^{1/2}.$

Figure S17. ORTEP drawings of. C2·2CH₂Cl₂. Thermal ellipsoids are shown at the 50% probability level. Color chart: grey: C, yellow green: Cl, white: H, purple: N, red: O, Green: Ru.