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Scheme S1: Mechanism of singlet oxygen generation by the complex in GSH and H,O,

medium.

Explanation: To determine the oxidative mechanism by which 1-3 induces DNA cleavage,
nuclease activity was probed in the presence of reactive oxygen species (ROS) scavengers
(NaNj3, glycerol, DMSO, and histidine) in GSH and H,O, medium. NaNj displayed the
greatest inhibitory effect, suggesting that singlet oxygen ('0O,) is the major ROS intermediate
formed during the DNA cleavage process. We propose that 1-3 reduces molecular oxygen (in
solution) to superoxide, which generates singlet oxygen through Haber-Weiss reaction. The
paramagnetic cobalt(Il) ion in 1-3 could be responsible for singlet oxygen generation, via a

photo-redox pathway in ambient light. (Dalton Trans., 2018, 47, 5755-5763)

TABLES

Table S1. FT-IR frequency (cm'1) data of L1-L4 and 1-4.




Compound Vo-H Vazide VC=N ve-n (aromatic) V-0
(azomethine) (phenolate)

L1 3180, 2931 - 1598 1482 1244

1 3217, 2994 - 1605 1489 1220

L2 - - 1634 1485 1261

2 - 1630 1492 1250

L3 3442 - 1640 1482 1238

3 3442 - 1648 1490 1231

L4 3408 - 1633 1482 1238

4 - 2063 1654 1490 1224

Table S2. Crystal data and refinement parameters of the structure of L1, L2, 1-4.

Crystal Data

Compound L1 L2 1 2 3 4
CCDC/CSD 2096735 2096736 2096741 2096740 2096738 2096739
Formula C3H2N,O, C24 H20N2 O Cy3H,CLCoN,0, CyHpCLCON;O( | CisHis Cl, CoN, O, | Gy Hyg Co Ng O,
D
Formula 228.25 352.42 358.08 523.30 400.15 474.37 g/mol
Weight
Crystal Monoclinic Monoclinic Monoclinic Monoclinic Monoclinic orthorhombic
System
Space group P2l/c C2/c C2/c P21/ P2l/c P2,2,2
a, b, c[A] 13.2747(8), 30.26(3), 20.068 (2), 11.4150 11.3334 (6), 13.3626(9), 9.9275(12) A,
18.7979(11), 4.659(5),
9.1742(5) 26.69(2) (11), 13.5735 (14) 11.444 (6), 8.7473(6), 14.1515(16) A
18.7309 (10) 14.7469(9) ,14.8834(18) A
a, B,y [°] 90, 95.676(2), | 90, 105.87(2), | 90, 115.086(2), 90 90, 95.314(2), 90 90, 93.525(3), 90 90, 90, 90
90 90
V [A3] 2278.1(2) 3618(6) 2816.1(5) 2418.9(2) 1720.45(20) 2090.95(40)
Z 4 8 8 4 4 4
D(calc) 1.331 1.294 1.689 1.437 1.555 g/em? 1.507
[g/cm’]
w(MoKa) 0.092 0.080 1.599 0.954 1.317 0.858
[/mm ]
F(000), 960, 960.43 1488.0, 1488.56 | 1448.0, 1453.56 1076.0, 1078.86 820, 822.80 976, 977.67
F(000)'
h, k, Imax 16, 23,11 36,5,32 27,15,18 15,15,25 16, 10, 17 12,17, 18
Crystal Size | 0.24x 0.12x | 0.28 x 0.08 x | 0.22x 0.18 x 0.04 0.22x 0.12x 0.32x 0.2x 0.06 0.28x 0.12x 0.04
[mm] 0.04 0.02 0.03

Data Collection




Temperature 150 150 150 155 150 150

X)

Radiation 0.71073 0.71073 0.71073 0.71073 0.71073 0.71073

[Angstrom]

MoKa

0 Max [Deg] | 26.415 25.00 29.198 29.217 25.385 25.728

Data 0.997 0.975 0.993 0.995 0.996 1.75

completeness

Tot.,, Uniq. | 28036, 4671, | 15501, 3481, | 41859, 3345, 0.038 31851, 5205, 24005, 3160, 0.043 19465, 3964, 0.094

Data, R(int) 0.058 0.075 0.033

Observed 3750 2257 3345 5205 2764 3266

Data [I > 2.0

sigma()]

Refinements

Nref, Npar 4683, 315 3571, 244 3833, 185 6571, 299 3172, 215 3979, 293

R, wR2, S 0.0413(3750), | 0.05(2257), 0.0227(3345), 0.0352( 5205), 0.0655(2764), 0.0599( 3266),
0.1017(4671), | 0.1578(3481), 0.0593(3806), 1.059 | 0.0776( 6535), 0.1771( 3160), 0.1693(3964),
1.035 1.038 1.077 1.191 1.095

Tmin, Tmax 0.987, 0.996 0.992, 0.998 0.715, 0.938 0.872,0.972 0.691,0.924 0.884,0.966
‘w=1/[\s"2NF | ‘w=1/[\s"2N(Fo | ‘w=1/[\s"2"(Fo"2") | ‘w=l/[\s"2"(Fo*2 | ‘w=1/[\s"2"(Fo"2") | ‘w=1/[\s"2"(Fo"2")
0/2M+(0.043 | A2M)+(0.0826P) | +(0.0263P)"2/+2.71 | M)+(0.0243P)" 2+ | +(0.0575P)"2~+12.8 | +(0.0866P)2"+1.9
6P)"27+0.615 | "27] where | 29P] where 1.5509P] where 407P] where 648P] where
6P] where | P=(Fo"2"+2Fc” | P=(Fo"2"+2Fc"2")/ | P=(Fo"2"+2Fc"2" | P=(Fo"2"+2Fc"2")/ | P=(Fo"2"+2Fc"2")/
P=(Fo™2"+2F | 2M)/3’ 3 )3 3 3
c2M/3°

Table S3. Bond distances of L1, L2, and 1-4.

L1
Atoms Length (A) Atoms Length (A) Atoms Length (A)
O1A-C7A 1.3696(17) 01B-C7B 1.3729(16) N1A-C1A 1.335(2)
O1A-C6A 1.4216(16) 01B-C6B 1.4174(15) N1A-C5A 1.3357(17)
02A-N2A 1.4064(16) 02B-N2B 1.3999(15) N2A-C13A 1.2705(18)
02A-H2AA 0.93(2) 02B-H2BB 0.94(2) N1B-C1B 1.3374(19)
N1B-C5B 1.3405(17) N2B-C13B 1.2674(18)

L2
Atoms Length (A) Atoms Length (A) Atoms Length (A)
0l_C7 1.36803) C3_Ca 1.380(4) Cll_C12 13873)
01—C6 1.423(3) C4—C5 1.384(3) Cl4—Cl5 1.518(3)
N2—C13 1276(3) C5—C6 1.494(3) C15—C16 13703)
N2—_Cl4 1.461(3) Cc7—C12 1387(3) C15—C24 1.429(3)
NI—C1 1.3353) Cc7—C3 1413(3) Cl6—Cl17 1411(3)
NI_C5 1.34103) C8_C9 1392(3) Cl7—CI8 1357(3)
Cl—C2 1.374(4) C8—C13 1.473(3) CI18—C19 1.4193)
C2—C3 13793) C9—C10 1381(3) C19—C20 1413(3)

1

Atoms Length (A) Atoms Length (A) Atoms Length (A)
Co-N1 2.0449(12) 01-C6 1.4356(16) Co-CI2 2.3334(4)
Co-N2 2.0582(12) 02-N2 1.4007(15) 01-C7 1.3838(16)
Co—CI1 2.2639(4) 02-H2A 0.876(9) N1-C1 1.3549(17)
Co-01 2.3039(10) N1-C5 1.3443(18) N2-C13 1.2817(19)

2
Atoms Length (A) Atoms Length (A) Atoms Length (A)
CoNI 2.0549(14) NI-C5 1345(2) CoOL 23220(12)
Cona 2.0657(14) NLCI 1.346(2) ol 13732)
Co—Cll1 2.2851(5) N2-C13 1.284(2) 01-C6 1.433(2)




2.2862(5) 1.472(2) 1.143(4)
Co—CI2 N2—C14 N100—C101
3
Atoms Length (A) Atoms Length (A) Atoms Length (A)
Col—N2 2.059(5) Col—Cl1 2.2883(17) | Col—O1 2.299(4)
Co1—N1 2.064(5) Co1—Cl2 2.2918(16) | 01—C7 1.370(7)
02—H2A 0.904(10) 02—C15 1.452(9) N1—C5 1.349(7)
N1—C1 1.352(8) N2—C13 1.284(8) N2—C14 1.472(8)
4
Atoms Length (A) Atoms Length (A) Atoms Length (A)
Co—01 1.849(5) 02-C15 1.386(9) N3—-N4 1.190(9)
Co—N1 1.868(6) 02-C16 1.420(10) N4—N5 1.145(10)
Co—N2 1.908(7) N1-C9 1.276(9) N6-N7 1.173(12)
Co—N6 1.954(7) N1-C2 1.491(9) N7—-N8 1.190(14)
Co—N3 1.971(6) N2-C21 1.349(10) 01-C1 1.397(10)
Co-02 1.989(5) N2-C17 1.359(10)
Table S4. Bond angles of L1, L2, and 1-4.
L1
Atoms Angle (°) Atoms Angle (°) Atoms Angle (°)
C7A-O01A—-C6A 118.85(11) O1A-C6A-C5A 108.13(11) C1B—-N1B-C5B 117.86(13)
N2A—0O2A-H2A | 101.6(13) O1A-C6A—-H6AI1 | 110.1 C13B—N2B-02B 111.23(12)
A
C1A-N1A-C5A | 117.91(13) O1A—C6A—-H6A2 | 110.1 N1B—C1B-C2B 123.34(14)
C13A—N2A-02 110.65(12) O1A—-C7A-C8A 124.67(13) O1B—C6B—H6B1 110.1
A
NI1A-C1A—C2A 123.48(14) O1A—C7A-CI2A | 114.60(12) N1B-C5B—C4B 122.49(13)
N1A-C1A-H1A | 1183 N2A-C13A—C12 | 120.82(13) N1B-C5B-C6B 114.30(12)
A
N1A-C5A-C4A | 122.18(13) N2A-C13A-H13 | 119.6 0O1B-C6B—-H6B2 110.1
A
NI1A-C5A—C6A 114.39(12) N2B-0O2B—-H2B 101.8(13) O1B—C6B—C5B 108.15(11)
B
C7B—01B—C6B 118.03(10) N1B-C1B-HIB 118.3 N2B-C13B-C12B 120.96(13)
N2B—C13B—-H13 | 119.5 O1B-C7B—CI12B | 115.65(12)
B
L2
Atoms Angle(°) Atoms Angle(°) Atoms Angle(°)
C7—01—C6 118.55(18) N2—C13—C8 120.9(2) O1—C6—H6B 110.000
C13—N2—Cl14 115.7(2) N2—C13—H13 119.600 C5—C6—H6B 110.000
C1—N1—C5 117.1(2) C8—C13—H13 119.600 H6A—C6—H6B 108.400
N1—C1—C2 124.7(2) N2—C14—C15 112.18(19) 01—C7—C12 125.27(19)
N1—C1—H1 117.600 N2—C14—H14A | 109.200 01—C7—C8 114.9(2)
N1—C5—C4 122.0(2) N2—C14—H14B | 109.200 01—C6—C5 108.27(19)
N1—C5—C6 114.6(2) C4—C5—C6 123.3(2) O1—C6—H6A 110.000




Atoms Angle(°) Atoms Angle(°) Atoms Angle(°)
N1-Co-N2 136.99(5) C7-01-C6 115.86(10) N1-C1-C2 122.74(14)
N1-Co—ClI 106.63(4) C7-01-Co 126.33(8) NI1-C1-Hl 118.6
N2—Co—ClI 107.30(4) C6-01-Co 111.20(8) N2-C13-CI2 125.63(13)
N1-Co—01 74.74(4) N2-02-H2A 103.0(14) 01-C7-C12 116.97(12)
N2-Co-01 77.96(4) C5-N1-C1 118.18(12) N1-C5-C4 122.23(13)
Cl1-Co—0l 92.80(3) C5-N1-Co 119.86(9) N1-C5-C6 118.88(12)
N1-Co—CI2 100.46(3) C1-N1-Co 121.40(10) 01-C6-C5 109.29(11)
N2-Co—CI2 92.85(4) C13-N2-02 110.76(12) 01-C6-H6A 109.8
Cl1-Co—CI2 108.794(16) | C13-N2—Co 131.88(10) 01-C6-H6B 109.8
01-Co—CI2 158.27(3) 02-N2—Co 116.10(9) 01-C7-C8 122.66(12)

2

Atoms Angle(°) Atoms Angle(°) Atoms Angle(°)

N1-Co—N2 119.82(6) C7-01-C6 118.43(13) N1-C5-C4 121.98(17)

109.87(4) 117.63(10) 116.79(15)
N1-Co—ClI C7-01-Co N1-C5-C6
N2-Co—ClI 117.13(4) C6-01-Co 108.71(10) N2-C13-C12 125.75(16)
N1-Co—CI2 102.65(4) C5-N1-C1 118.44(15) N2-C13-H13 117.1
N2—-Co—CI2 100.53(4) C5-N1-Co 120.57(12) O1-Co—HoA 110.5
Cl1-Co—CI2 103.712) C1-N1-Co 120.99(12) N100-C101-c102 | 179:33)
N1-Co-01 72.2805) C13-N2-Cl14 116.62(15) 01-C6-H6B 1105
N2-Co—01 76.10(5) C13-N2—Co 126.86(12) 01-C7-C12 115.35(15)
Cll—Co-01 85.50(3) Cl4-NI—Co 116.30(11) O1-C6-CS 106.11(13)
CI2-Co-01 170.66(3) N1-C1-C2 122.18(19) N1-C1-HI 118.9

3

Atoms Angle(®) Atoms Angle(®) Atoms Angle(®)
N2—Co1—N1 121.25(18) | N1—Co1—CI1 103.05(14) | N1—Co1—CI2 107.46(14)
N2—Co1—Cl1 102.03(15) | N2—Co1—CI2 118.69(15) | Cli—Co1—CI2 100.64(6)
N2—Co1—01 77.49(17) Cl1—Co1—01 174.36(11) | C1—N1—Col 124.5(4)
N1—Co1—01 72.79(17) Cl2—Co1—01 84.39(11) C5—N1—Col 117.8(4)
C7—01—Co1l 119.1(3) C6—01—Col 106.5(3) C14—N2—Co1l 116.6(4)
C13—N2—Col | 126.7(4) 01—C7—C12 115.2(5) 01—C7—C8 123.9(5)

4

Atoms Angle (%) Atoms Angle(®) Atoms Angle(®)
01-Co—NI1 87.6(3) N2—Co-N3 92.0(3) C2-N1-Co 112.2(5)
01-Co-N2 92.9(3) N6—Co—N3 172.6(3) C9 -N1-Co 125.6(5)
N1-Co-N2 178.5(2) 01-Co—02 176.9(3) C21-N2—Co 125.9(6)
01-Co-N6 93.3(3) N1-Co-02 95.4(2) C17-N2—Co 115.3(5)
N1-Co-N6 89.7(3) N2—-Co-02 84.0(3) N4-N3—Co 120.5(5)
N2-Co-N6 88.9(3) N6—-Co—02 86.9(3) N7-N6—Co 118.2(7)
01-Co—N3 94.0(2) N3—-Co—02 85.9(3) C15-02—Co 126.2(5)
N1-Co-N3 89.4(3) C1-01-Co 109.0(4) C16-02—Co 114.2(4)

Table S5. BVS calculation.BVS calculation for 4:




To Bond type Distance(r;;) S
1.68 Col—N1 1.868(6) 0.6015
1.68 Col—N2 1.908(7) 0.5399
1.68 Col—N3 1.971(6) 0.4551
1.68 Col—N6 1.954(6) 0.4768
1.68 Col—O1 1.849(5) 0.852
1.68 Col—O02 1.989(5) 0.584

Note: The bond valence sum (BVS) method is an empirical means of estimating the
oxidation state of a metal ion from metal-ligand distances. The method is predicated on the
assumption that the length of any given metal-ligand bond is related via a simple expression

to the oxidation state of the metal ion.The expression is: BVS=} S;;=) e, T;)/0-37

Where, 1j; is the experimental bond length, ry is an empirical parameter associated with the
metal in a given oxidation state and the type of coordinating atom, and S;; is the bond valence
value for the j* bonded atom to the i metal.

Thus } S;j value=3.507 indicates cobalt atom in complex 4 has +3 oxidation state.

Table S6. Calculated Frontier Molecular Orbital energies (eV) for L1-L.4 and 1-4.

Basis set L1 L2 L3 L4 1 2 3 4
Enomo, €V | —5.9780 | —5.4486 | —5.38 -5.23 —-14.3530 -12.7167 | -14.05 | -15.82
Evumo, €V | —1.1472 | -1.2540 | -1.15 —0.81 -13.4714 -8.7216 | -12.52 | -15.17
AEGap, €V 4.8308 4.1946 4.23 4.42 0.8816 3.9944 1.53 0.65
Enomo-1, €V | —6.6052 | -6.1149 | —6.03 =5.75 —-14.6850 —-13.0027 | -14.32 | -16.44



https://www.sciencedirect.com/topics/chemistry/metal-ion

Evumon, eV | —0.8144 | —1.0095 | —0.65 —0.50 —13.0468 -8.5640 | -9.61 -13.21
IP, eV 5.9780 5.4486 5.38 5.23 14.3530 12.7167 | 14.05 15.82
EA, eV 1.1472 1.2540 1.15 0.81 13.4714 8.7216 12.52 15.17
n, eV 24154 2.0973 2.115 221 0.4408 1.9972 0.76 0.325
% eV 3.35626 | 3.3513 3.265 3.02 13.9122 10.7196 | 13.285 | 15.495
c,eV 0414 0.476 0.472 0.452 2.268 0.5 3.076
Up, €V —3.35626 | —3.3513 | -3.265 -3.02 —13.9122 —10.7196 —15.495

[EroraL: Total energy; Enomo: HOMO energy; ELumo: LUMO energy values. AEGap = (ELumo —
Enomo); IP: Ionization potential; EA: Electron affinity; n: Absolute hardness, (I — A)/2. y:
Electronegativity, (I + A)/2. o: Softness, 1/1. wp: Chemical potential, — (I + A)/2].

A. Spectroscopy (UV-Visible, FTIR and 'H-NMR)
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Fig. S2. IR spectrum of L1 and 1.
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Fig. S8 'H NMR of L1.
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Fig. S11. "H NMR of C2.

Fig. S12. '"H NMR spectrum of L3
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B. X-ray Crystallography

Fig. S20. The hydrogen bonding and I1-II interaction of L1.




Fig. S21. (a) Intermolecular hydrogen-bonding interactions of 1, (b) the supramolecular
dimer formed by Type-A CH---m interaction of 1, the supramolecular dimer formed by
Type-B  m--'m interaction of 1, (c¢) the extended 2D supramolecular framework in
crystallographic ab plane with polyhedron.

(3)

Fig. S22. The extended 1-D supramolecular sheet of complex 3.



C. DFT study
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D. Biological study
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Fig. S28. A-C) Cytotoxicity effect of the compound with MTT assay: U-937, HEK 293T, and
A549 cells were treated with different concentrations of L1—4, and its metal complexes 1—4
for 72 hours to study the cytotoxic effect on cell lines from different cell origin. The mean
cell death from three independent experiments was calculated and represented as % cell death
compared to control (taken as zero) and doxorubicin (taken as positive control). D) The data
obtained was transformed, normalized and plotted as non-linear regression curve to calculate
ICs values using Graphpad Prism 8. E) U-937, HEK 293T, and A549 cells were treated with
different concentrations of doxorubicin for 72 h and MTT assay was carried out.
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Fig. S29: The cell cycle profile studies of L1—4, and its metal complexes 1—4 with FACS.



