Supplementary Data

Modular synthesis of antimalarial quinoline-based PGM metallarectangles

Taryn M. Golding ^a, Mziyanda Mbaba ^a, and Gregory S. Smith ^{a,*}

^a Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, South Africa

*Corresponding authors' E-mail address: gregory.smith@uct.ac.za

Fig. S1 ¹ H NMR spectrum of ligand L in DMSO	3
Fig. S2 ¹ H NMR spectrum of binuclear complex 1c in CDCl ₃	3
Fig. S3 ¹ H NMR spectrum of binuclear complex 1d in CDCl ₃	4
Fig. S4 ¹³ C{ ¹ H} NMR spectrum of ligand L in DMSO	4
Fig. S5 ¹³ C{ ¹ H} NMR spectrum of binuclear complex 1c in CDCl ₃	5
Fig. S6 ¹³ C{ ¹ H} NMR spectrum of binuclear complex 1d in CDCl ₃	5
Fig. S7 Stacked IR spectra of ligand L and binuclear complexes 1c and 1d	6
Fig. S8 LC-MS data of ligand L	7
Fig. S9 Mass spectrum of binuclear complex 1c	8
Fig. S10 Mass spectrum of binuclear complex 1d	8
Table S1 Crystallographic data and refinement parameters for complex 1c · 5CHCl ₃ 9	
Table S2 Selected bond lengths (Å) and angles (°) for complex $1c \cdot 5CHCI_3$	9
Fig. S11 ¹ H NMR spectrum of metallarectangle 2c in DMSO 1	0
Fig. S12 ¹ H NMR spectrum of metallarectangle 2d in DMSO 1	0

Fig. S13 ¹ H NMR spectrum of metallarectangle 3c in DMSO
Fig. S14 ¹ H NMR spectrum of metallarectangle 3d in DMSO
Fig. S15 ¹³ C{ ¹ H} NMR spectrum of metallarectangle 2c in DMSO
Fig. S16 ¹³ C{ ¹ H} NMR spectrum of metallarectangle 2d in DMSO
Fig. S17 ¹³ C{ ¹ H} NMR spectrum of metallarectangle 3c in DMSO
Fig. S18 ¹³ C{ ¹ H} NMR spectrum of metallarectangle 3d in DMSO
Fig. S19 DOSY NMR spectrum of metallarectangle 2c in DMSO
Fig. S20 DOSY NMR spectrum of metallarectangle 2d in DMSO
Fig. S21 DOSY NMR spectrum of metallarectangle 3c in DMSO
Fig. S22 DOSY NMR spectrum of metallarectangle 3d in DMSO
Fig. S23 Stacked IR spectra of ligand L, binuclear complex 1c, and metallarectangle 2c 17
Fig. S24 Stacked IR spectra of ligand L, binuclear complex 1d, and metallarectangle 2d17
Fig. S25 Stacked IR spectra of $[{IrCl(Cp^*)}_2(\mu-\eta^2-\eta^2-C_2O_4)]$ and metallarectangle 3c
Fig. S26 Stacked IR spectra of [{RuCl(<i>p</i> -cymene)} ₂ (μ - η ² - Ω ₂ O ₄)] and metallarectangle 3d
Fig. S27 Mass spectrum of metallarectangle 2c
Fig. S28 Mass spectrum of metallarectangle 2d
Fig. S29 Mass spectrum of metallarectangle 2d
Fig. S30 Mass spectrum of metallarectangle 3c
Fig. S31 Mass spectrum of metallarectangle 3c
Fig. S32 Mass spectrum of metallarectangle 3d
Fig. S33 Mass spectrum of metallarectangle 3d

Fig. S1 ¹H NMR spectrum of ligand L in DMSO.

Fig. S2 ¹H NMR spectrum of binuclear complex 1c in CDCl₃.

Fig. S3 ¹H NMR spectrum of binuclear complex 1d in $CDCI_3$.

Fig. S4 ${}^{13}C{}^{1}H$ NMR spectrum of ligand L in DMSO.

Fig. S5 ${}^{13}C{}^{1}H$ NMR spectrum of binuclear complex 1c in CDCl₃.

Fig. S7 Stacked IR spectra of ligand L and binuclear complexes 1c and 1d.

Fig. S8 LC-MS data of ligand L.

Fig. S9 Mass spectrum of binuclear complex 1c.

Fig. S10 Mass spectrum of binuclear complex 1d.

Formula Unit	$C_{34}H_{39}Cl_5lr_2N_2 \cdot 5(CHCl_3)$	F(000)	1572
Formula Weight	1634.20	Crystal Size (mm)	0.06 x 0.08 x 0.11
Crystal System	Triclinic	Temperature (K)	100
Space Group	P-1	Scan Range (°)	1.6 < θ < 28.3
a, b, c (Å)	11.6063 (2), 16.2300 (3), 16.3533 (3)	Unique Reflections	13844
α, β, γ (°)	69.543 (3), 81.622 (3), 76.793 (4)	R _{int}	0.102
Volume (ų)	2802.4 (9)	Observed Data [I>2σ(I)]	9029
Z	2	R, wR2	0.0548, 0.1271
Density _{calc} (g/cm ³)	1.937	Goodness-of-fit	0.99
μ (mm ⁻¹)	5.729	Min, Max Δρ (e.Å-³)	-1.75, 2.17

Table S1 Crystallographic data and refinement parameters for complex $1c \cdot 5CHCl_3$.

Table S2 Selected bond lengths (Å) and angles (°) for complex $1c \cdot 5CHCl_3$.

Bond lengths (Å)								
Ir ₁ – N ₁	2.113 (6)	$Ir_{2A} - N_2$	2.203 (10)	$Ir_{2B} - N_2$	2.147 (13)			
Ir ₁ – CI ₁	2.401 (2)	$Ir_{2A} - CI_3$	2.322 (7)	Ir _{2B} – Cl ₃	2.562 (10)			
Ir ₁ – Cl ₂	2.417 (2)	$Ir_{2A} - CI_4$	2.408 (8)	Ir _{2B} – Cl ₄	2.443 (11)			
Ir ₁ – C ₂₁	2.132 (8)	Ir _{2A} – C ₃₁	2.170 (2)	Ir _{2B} – C ₄₁	2.140 (3)			
Ir ₁ – C ₂₂	2.152 (8)	$Ir_{2A} - C_{32}$	2.218 (19)	Ir _{2B} – C ₄₂	2.170 (3)			
Ir ₁ – C ₂₃	2.141 (8)	Ir _{2A} – C ₃₃	2.177 (19)	Ir _{2B} – C ₄₃	2.130 (5)			
Ir ₁ – C ₂₄	2.155 (8)	Ir _{2A} – C ₃₄	2.170 (2)	Ir _{2B} – C ₄₄	2.110 (3)			
Ir ₁ – C ₂₅	2.173 (8)	Ir _{2A} – C ₃₅	2.170 (2)	Ir _{2B} – C ₄₅	2.080 (3)			
Bond angles (°)								
$\mathbf{CI}_1 - \mathbf{Ir}_1 - \mathbf{N}_1$	87.27 (18)	$\mathbf{CI}_3 - \mathbf{Ir}_{2A} - \mathbf{N}_2$	90.4 (3)	$CI_3 - Ir_{2B} - N_2$	85.5 (4)			
$CI_2 - Ir_1 - N_1$	86.9 (2)	$CI_4 - Ir_{2A} - N_2$	88.7 (3)	$CI_4 - Ir_{2B} - N_2$	89.0 (4)			

89.1 (2)

 $CI_3 - Ir_{2B} - CI_4$

 $\textbf{Cl}_3 - \textbf{lr}_{2\text{A}} - \textbf{Cl}_4$

87.64 (7)

 $CI_1 - Ir_1 - CI_2$

83.0 (3)

Fig. S12 ¹H NMR spectrum of metallarectangle **2d** in DMSO.

Fig. S14 ¹H NMR spectrum of metallarectangle 3d in DMSO.

Fig. S15 ¹³C{¹H} NMR spectrum of metallarectangle **2c** in DMSO.

Fig. S16 ¹³C{¹H} NMR spectrum of metallarectangle 2d in DMSO.

Fig. S18 ¹³C{¹H} NMR spectrum of metallarectangle 3d in DMSO.

Fig. S19 DOSY NMR spectrum of metallarectangle 2c in DMSO.

Fig. S20 DOSY NMR spectrum of metallarectangle 2d in DMSO.

-

10

8

DMSO

2

4

Note: Displaced *p*-cymene ligand is due to the NMR sample standing too long before being analyzed.

F2 [ppm]

Fig. S23 Stacked IR spectra of ligand L, binuclear complex 1c, and metallarectangle 2c.

Fig. S24 Stacked IR spectra of ligand L, binuclear complex 1d, and metallarectangle 2d.

Fig. S25 Stacked IR spectra of $[{IrCl(Cp^*)}_2(\mu-\eta^2-\eta^2-C_2O_4)]$ and metallarectangle **3c**.

Fig. S26 Stacked IR spectra of [{RuCl(p-cymene)}₂(μ - η^2 - Ω_2O_4)] and metallarectangle **3d**.

Fig. S27 Mass spectrum of metallarectangle 2c.

Fig. S28 Mass spectrum of metallarectangle 2d.

Fig. S29 Mass spectrum of metallarectangle 2d.

Fig. S30 Mass spectrum of metallarectangle 3c.

Fig. S31 Mass spectrum of metallarectangle 3c.

Fig. S32 Mass spectrum of metallarectangle 3d.

Fig. S33 Mass spectrum of metallarectangle 3d.