Supporting Information

A Square Planar Silylene Nickel Four-Membered Ring

Sebastian Kaufmann, Ralf Köppe and Peter W. Roesky

Content

Experimental	S3
Mass Spectrum	S4
IR Spectra	S5
RAMAN Spectra	S6
Crystallographic Appendix	S7
Ortep Plots	S9
Quantum Chemical Calculations	S10
References	S21

Experimental

General Procedures

All manipulations were performed under exclusion of moisture and oxygen in flame-dried Schlenk-type glassware or in an argon-filled *MBraun* glovebox. THF was distilled under nitrogen from potassium/benzophenone prior to use. The IR spectra were recorded with a Bruker FTIR spectrometer Tensor 37 using a DTGS detector with as CsI window. For the mid (4000 to 400 cm⁻¹) and far (1500 to 200 cm⁻¹) infrared ranges beamsplitters made of KBr and silicon were used. Samples were measured by using the attenuated total reflection (ATR, diamond) technique on bulk material. The Raman spectra were recorded with a Bruker Raman microscope Senterra II using an excitation laser with wavelengths of 532 or 785 nm. Elemental analyses were carried out with a Micro Cube from Elementar Analysensysteme GmbH. Because of the air-sensitive nature of some reported complexes, only slightly deviating elemental analyses could be obtained. Experimental procedure for X-ray analysis is given below in the crystallographic appendix.

 $[PhC(NtBu)_2Si(C_5Me_5)]^1$ was synthesized according to the literature known methods. $[Ni(cod)_2]$ was used as received without further purification.

Synthesis of [PhC(NtBu)₂SiNi(C₅Me₅)]₂

Onto a mixture of 100 mg $[PhC(NtBu)_2Si(C_5Me_5)]$ (0.254 mmol, 1.00 eq.) and 70 mg $[Ni(cod)_2]$ (0.254 mmol, 1.00 eq.) THF was condensed at -88 °C. Afterwards the mixture was stirred until it reached ambient temperature, and everything was dissolved. During this process, the colour of the solution changed from yellow to deep green and ended up dark red almost black. After reaching room temperature the mixture was no longer stirred and X-ray suitable crystals formed overnight. The product was isolated as deep red crystals in 45% yield (52 mg, 0.057 mmol).

NMR measurements were not possible due to the insolubility of the product in common organic solvents.

EI-MS (70 eV): m/z (%) = 904 ([M]⁺, 1), 453 (1/2[MH]⁺, 1), 384 (1/2[M]⁺ –NtBu, 6), 328 (1/2[M]⁺ –NtBu –tBu, 44), 231 ([PhC(tBuN)₂]⁺, 26), 175 ([PhC(NH)(NtBu)]⁺, 32), 161 ([PhC(NH)tBu]⁺,44), 119 ([PhC(NH)2]⁺, 100).

IR (ATR, cm⁻¹): 2952 (s), 2923 (s), 2895 (s), 2852 (s), 1411 (vs), 1389 (m), 1356 (m), 1263 (m), 1203 (w), 787 (w), 744 (m), 706 (m), 602 (w), 502 (m), 423 (w), 374 (w), 308 (w).

RAMAN (excitation wavelength 532 nm, cm⁻¹): 2528, 2425, 1600, 1512, 1068, 751, 625, 465, 357, 297, 201, 128, 98.

Elemental analysis (calcd for $C_{50}H_{76}N_4Si_2Ni_2$): C 65.03 (66.23), H: 8.12 (8.45), N: 5.92 (6.18), due to the formation of silicon carbide carbon values were always too low.

Mass Spectrum

Figure S 1: EI mass spectrum of $[PhC(NtBu)_2SiNi(C_5Me_5)]_2$. The signals between 500 and 800 Da are residual noise from measurements prior to this spectrum. The inset shows the simulated and the measured $[M]^+$ peak.

Figure S 2: ESI mass spectrum of [PhC(NtBu)₂SiNi(C₅Me₅)]₂.

IR Spectra

Selle I Vol

Figure S 3: ATR-IR spectrum of [PhC(NtBu)₂SiNi(C₅Me₅)]₂.

Figure S 4: Theoretical IR spectrum of [PhC(NtBu)₂SiNi(C₅Me₅)]₂.

RAMAN Spectra

Figure S 5: Raman spectra of of [PhC(NtBu)₂SiNi(C₅Me₅)]₂ (excitation wavelengths 532 (blue) and 785 (red) nm).

Figure S 6: Theoretical Raman spectrum of [PhC(NtBu)₂SiNi(C₅Me₅)]₂

Crystallographic Appendix

A suitable crystal was covered in mineral oil (Aldrich) and mounted on a glass fiber or a mylar loop. The crystal was transferred directly to the cold stream of a STOE IPDS 2 diffractometer. All structures were solved by using the program SHELXS/T^{2, 3} using Olex2.⁴ The remaining nonhydrogen atoms were located from successive difference Fourier map calculations. The refinements were carried out by using full-matrix least-squares techniques on F^2 by using the program SHELXL.^{2, 5} In each case, the locations of the largest peaks in the final difference Fourier map calculations, as well as the magnitude of the residual electron densities, were of no chemical significance.

Crystallographic data for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as a supplementary publication no. 2105223. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB21EZ, UK (fax: (+(44)1223-336-033; email: <u>deposit@ccdc.cam.ac.uk</u>).

Compound [PhC(NtBu)₂SiNi(C₅Me₅)]₂

Formula	C50H76N4Ni2Si2
$D_{calc.}$ / g cm ⁻³	1.249
μ/mm^{-1}	0.868
Formula Weight	906.74
Colour	red
Shape	plate
Size/mm ³	0.21×0.14×0.04
T/K	150
Crystal System	triclinic
Space Group	<i>P</i> -1
a/Å	10.265(2)
b/Å	11.626(2)
c/Å	12.091(2)
$\alpha/^{\circ}$	83.66(3)
β/°	68.19(3)
$\gamma / ^{\circ}$	64.34(3)
√/Å ³	1205.2(6)
Z	1
Z'	0.5
Wavelength/Å	0.71073
Radiation type	MoKα
$\Theta_{min}/^{\circ}$	1.947
$\Theta_{max}/^{\circ}$	27.716
Measured Refl.	11352
Independent Refl.	4741
Reflections with $I > 2(I)$	3263
R _{int}	0.0774
Parameters	273
Restraints	0
Largest Peak	0.914
Deepest Hole	-0.351
GooF	0.892
wR2 (all data)	0.1133
wR ₂	0.1068
R_1 (all data)	0.0714
R_1	0.0464

Ortep Plots

Figure S 7: Ortep plot of the solid-state structure of $[PhC(NtBu)_2SiNi(C_5Me_5)]_2$. Ellipsoids are displayed at 50% probability.

Quantum Chemical Calculations

Table S 1: Coordinates of the molecule Ni2Si2 (given in atomic units).

76087	2.29800468649534	ni
03823	-1.71758429493157	si
03823	1.71758429493157	si
63585	4.94362483368674	с
54309	2.95744241330451	с
93085	5.01248565431217	с
83548	6.20742153626859	с
13929	2.91159204118965	с
76087	-2.29800468649534	ni
12535	-3.92606819411147	n
41843	-3.81925584741967	n
12535	3.92606819411147	n
41843	3.81925584741967	n
26554	5.69829427278720	с
11629	1.34017278551968	с
18860	5.85532573093956	с
60845	8.52687708187992	с
32933	1.23819903092903	с
63585	-4.94362483368674	с
54309	-2.95744241330451	с
93085	-5.01248565431217	с
83548	-6.20742153626859	с
13929	-2.91159204118965	с
73324	-5.00801043796624	с
63978	-4.65827439193746	с
36577	-4.43667617130531	с
73324	5.00801043796624	с
63978	4.65827439193746 S10	с

2.67621687754148	5.47573009436577	4.43667617130531 c
7.00404494219393	-0.23397463650354	4.35690971836451 h
8.16953047333237	-3.07380081959774	5.78530038875090 h
6.32322388822246	-0.90792288969012	7.59857438477650 h
-1.18205448489978	-8.74170257611171	1.34832732627536 h
1.81932808067207	-10.18135218304160	2.00265654991244 h
1.46281615948595	-8.09263071438214	-0.65375516459675 h
-2.87231824715779	-5.43979098096667	7.76125583679610 h
-2.33278495401071	-8.24956828761237	5.97245699823104 h
-3.91556935530289	-5.61570670517661	4.55175563475718 h
0.09123617797445	0.07399249269944	8.05167028793235 h
2.72259646674555	-1.28811838098080	9.68436497168758 h
-0.28982916424332	-2.82055101551157	9.76064423602507 h
5.53651529357338	-6.08128913329527	-0.72790934610568 h
7.08275421124998	-7.56649175718017	1.90838032141322 h
7.70941816329697	-4.31583331514694	1.16291274995849 h
-6.51233378263779	1.77730378026554	-5.69829427278720 c
-0.88892896795074	8.40654708011629	-1.34017278551968 c
2.35399464319454	6.14735378618860	-5.85532573093956 c
-1.02895457217020	1.74530275260845	-8.52687708187992 c
-6.19955743604441	5.77074697032933	-1.23819903092903 c
2.79196711289804	-5.97725621722974	-7.04447561818366 c
6.54467869221696	0.52290976800999	-2.49515138159602 c
7.94753565763232	-3.28550083031162	-5.02992434647001 c
5.51198566732123	0.22476117472780	-7.12467976079564 c
-2.42275811040544	-8.36139321324315	-4.78168554440591 c
-3.76441715945115	-4.30428024097368	-6.87624279825845 c
-4.44950682732284	-4.87194099453284	-2.20754943270871 c
-2.79196711289804	5.97725621722974	7.04447561818366 c
-6.54467869221696	-0.52290976800999	2.49515138159602 c
-7.94753565763232	3.28550083031162	5.02992434647001 c

-5.51198566732123	-0.22476117472780	7.12467976079564 c
2.42275811040544	8.36139321324315	4.78168554440591 c
3.76441715945115	4.30428024097368	6.87624279825845 c
4.44950682732284	4.87194099453284	2.20754943270871 c
-7.00404494219393	0.23397463650354	-4.35690971836451 h
-8.16953047333237	3.07380081959774	-5.78530038875090 h
-6.32322388822246	0.90792288969012	-7.59857438477650 h
1.18205448489978	8.74170257611171	-1.34832732627536 h
-1.81932808067207	10.18135218304160	-2.00265654991244 h
-1.46281615948595	8.09263071438214	0.65375516459675 h
2.87231824715779	5.43979098096667	-7.76125583679610 h
2.33278495401071	8.24956828761237	-5.97245699823104 h
3.91556935530289	5.61570670517661	-4.55175563475718 h
-0.09123617797445	-0.07399249269944	-8.05167028793235 h
-2.72259646674555	1.28811838098080	-9.68436497168758 h
0.28982916424332	2.82055101551157	-9.76064423602507 h
-5.53651529357338	6.08128913329527	0.72790934610568 h
-7.08275421124998	7.56649175718017	-1.90838032141322 h
-7.70941816329697	4.31583331514694	-1.16291274995849 h
2.44512927235884	-5.39654294367663	-9.62088434808116 c
3.93615573623113	-8.28896549885234	-6.36531104087035 c
5.02966924063034	1.96218311089778	-2.27964047183942 h
8.36294741119683	1.49565007792096	-2.89364904264283 h
6.69095314783487	-0.50995919965868	-0.67396991812076 h
8.19180946179838	-4.47273708974616	-3.32250569933774 h
9.76709806977288	-2.30358234447666	-5.40949504052943 h
7.54692693404479	-4.54202983192580	-6.65956234842291 h
5.09228609342022	-1.04764050632017	-8.74020941797789 h
7.25669707653335	1.30797897568024	-7.57730071815203 h
3.92644164229907	1.56682211805244	-6.89774225165579 h
-1.24371363274593	-8.84254274601051	-6.44858406018523 h

-4.33025657784121	-9.19128194265651	-5.08671374145463 h
-1.58145393216718	-9.26611361232489	-3.09106966111344 h
-3.81386253295732	-2.22569292779026	-6.67428255019158 h
-5.71569071030827	-4.99951197227222	-7.23792999651609 h
-2.57655759694879	-4.79159362285858	-8.53710938962272 h
-3.65196452661618	-5.59952349196084	-0.40755615008564 h
-6.35219969280478	-5.70621352708152	-2.51556687027597 h
-4.63783057016940	-2.78727576352570	-2.01570831467746 h
-2.44512927235884	5.39654294367663	9.62088434808116 c
-3.93615573623113	8.28896549885234	6.36531104087035 c
-5.02966924063034	-1.96218311089778	2.27964047183942 h
-8.36294741119683	-1.49565007792096	2.89364904264283 h
-6.69095314783487	0.50995919965868	0.67396991812076 h
-8.19180946179838	4.47273708974616	3.32250569933774 h
-9.76709806977288	2.30358234447666	5.40949504052943 h
-7.54692693404479	4.54202983192580	6.65956234842291 h
-5.09228609342022	1.04764050632017	8.74020941797789 h
-7.25669707653335	-1.30797897568024	7.57730071815203 h
-3.92644164229907	-1.56682211805244	6.89774225165579 h
1.24371363274593	8.84254274601051	6.44858406018523 h
4.33025657784121	9.19128194265651	5.08671374145463 h
1.58145393216718	9.26611361232489	3.09106966111344 h
3.81386253295732	2.22569292779026	6.67428255019158 h
5.71569071030827	4.99951197227222	7.23792999651609 h
2.57655759694879	4.79159362285858	8.53710938962272 h
3.65196452661618	5.59952349196084	0.40755615008564 h
6.35219969280478	5.70621352708152	2.51556687027597 h
4.63783057016940	2.78727576352570	2.01570831467746 h
1.55224839274823	-3.59481575583005	-10.15600624332926 h
3.23320614841093	-7.10678425294095	-11.49267107044205 c
4.20289516491040	-8.73436068778577	-4.34934004031555 h

4.72217991094483	-9.99363526409612	-8.23714855195823 c
-1.55224839274823	3.59481575583005	10.15600624332926 h
-3.23320614841093	7.10678425294095	11.49267107044205 c
-4.20289516491040	8.73436068778577	4.34934004031555 h
-4.72217991094483	9.99363526409612	8.23714855195823 c
2.95388933364779	-6.63651082680101	-13.50278480908517 h
4.37193389137546	-9.40619650550298	-10.80606250189736 c
5.61392706863125	-11.79394905037564	-7.68687870216997 h
-2.95388933364779	6.63651082680101	13.50278480908517 h
-4.37193389137546	9.40619650550298	10.80606250189736 c
-5.61392706863125	11.79394905037564	7.68687870216997 h
4.98904374735600	-10.74576671454267	-12.27732999724776 h
-4.98904374735600	10.74576671454267	12.27732999724776 h

Table S 2: Vibrational Frequencies, IR intensities and Raman cross sections of [PhC(NtBu)₂SiNi(C₅Me₅)]₂.

v/cm⁻¹		IR intensity/	Raman cross
		km·mol⁻¹	scattering/%
-9.42	a _g	0	0
30.31	a _u	0.08931	8.72E-17
30.86	ag	0	25.9375166
35.93	a _g	0	17.4086381
36.28	a _u	0.22785	1.28E-17
46.28	a _g	0	9.45148736
52.78	a _g	0	35.0323569
58.88	ag	0	100
60.82	au	0.00887	0
63.68	au	0.00887	0
70.11	ag	0	23.5769397
73.48	au	0.07613	3.09E-18
75.66	a _g	0	6.37397486
80.28	au	0.15677	0
81.02	a _g	0	4.87201372
84.92	a _u	0.11666	0
87.98	ag	0	14.7563557
88.68	a _u	0.71372	1.51E-17
89.72	au	0.74217	0
95.99	a _g	0	15.4357375
98.77	au	1.04191	1.50E-19
101.89	au	0.01971	1.15E-18
104.9	ag	0	6.44145784
108.27	a _g	0	4.21850225
108.77	au	0.23306	2.61E-19
120.16	au	1.84043	0
123.85	a _g	0	0.78317439
124.7	au	1.34578	1.88E-19
129.86	ag	0	31.0505193
136.8	a _g	0	2.32704403
140.41	au	0.31054	0
147.46	ag	0	9.99347551
148.99	a _u	0.31567	2.27E-16

149.01	a _g	0	6.24515405
152.5	au	0.15417	2.24E-18
153.94	a _g	0	1.35428758
155.4	a _u	0.17795	3.53E-19
156.93	a _g	0	8.32517772
166.96	au	0.12606	0
169.64	a _g	0	2.67310771
173.67	a _g	0	0.98442467
174.83	au	0.26563	5.49E-19
180.58	au	0.28667	1.99E-19
183.46	ag	0	2.76900259
185.4	au	0.06089	0
187.08	a _g	0	4.34614713
189.89	au	0.20356	0
195.54	ag	0	4.71732253
197.08	a _u	0.02124	0
198.82	ag	0	2.30978446
201.39	au	0.16808	7.52E-20
206.25	a _u	0.33023	0
209.16	ag	0	1.73934649
218.39	ag	0	1.47461138
224.06	a _u	0.07656	1.09E-20
227.63	ag	0	4.51145959
235.5	au	0.9348	0
237.2	a _g	0	16.1105674
244.74	au	2.37692	0
246	ag	0	3.33378853
252.69	a _g	0	3.59620972
259.4	au	0.53303	1.82E-20
259.71	a _g	0	1.04702946
266.07	a _u	1.23813	0
271.94	ag	0	2.07296811
275.06	a _u	0.73273	0
275.29	a _g	0	0.98047963
281.15	au	0.73994	0
289.06	a _u	0.69615	0

289.6	a _g	0	1.63666158
292.93	au	2.02458	6.82E-18
292.95	a _g	0	2.09512104
296.51	a _g	0	0.43943601
298.69	au	2.1101	0
302.01	ag	0	1.81733694
305.04	au	0.84696	1.26E-19
307.22	a _g	0	1.06720987
309.18	au	6.27229	0
311.89	ag	0	2.36691171
315.57	a _u	6.69282	0
324.45	au	4.60224	1.55E-19
325.18	a _g	0	1.55491575
330.26	au	44.15403	1.83E-19
330.52	ag	0	0.67651789
334.1	a _u	0.96162	0
351.95	ag	0	1.44540289
362.55	ag	0	0.42730121
362.82	au	3.26184	1.87E-18
364.22	au	0.13008	0
364.62	ag	0	6.16606353
367.42	ag	0	2.22466259
370.47	au	15.47854	0
375.3	ag	0	3.91101653
375.53	au	9.19962	2.04E-19
390.96	au	35.04438	0
396.18	ag	0	0.49880131
403.5	ag	0	0.69092109
404.33	au	0.31107	4.96E-19
405.38	ag	0	0.75925757
407.05	a _g	0	2.19788182
410.54	au	0.44788	0
432.92	a _u	103.27167	0
438.51	a _g	0	8.67237939
440.18	au	1.33673	6.48E-20
464.04	au	11.04175	0

464.63	a _g	0	1.9994917
469.86	au	3.47402	0
477.11	ag	0	19.824218
479.19	ag	0	10.7531617
500.95	ag	0	0.51679298
501.88	au	1.79928	3.99E-21
514.97	au	120.14595	0
533.81	au	0.16134	9.51E-19
535.27	ag	0	5.28650871
540.23	au	0.01233	0
541.37	a _g	0	0.83847327
551.91	au	0.2513	1.43E-19
551.97	a _g	0	0.19015105
560.2	au	6.91365	7.45E-21
561.09	ag	0	2.67925287
580.81	au	1.01776	0
581.36	ag	0	1.25264583
587.36	au	0.08119	1.58E-20
587.85	ag	0	0.32324692
592.79	ag	0	3.31425298
593.09	au	4.59525	5.70E-20
594.67	au	83.3162	0
608.18	ag	0	2.89156444
608.58	au	4.93041	0
617.45	a _g	0	25.05102
681.86	ag	0	0.10819241
683.57	au	2.43675	0
696	ag	0	0.33632246
698.34	au	44.16692	0
702.09	ag	0	2.6301295
702.25	au	63.991	0
742.28	au	70.48546	0
746.15	a _g	0	15.3912799
750.73	ag	0	0.5342498
752.62	au	13.25194	0
785.01	au	23.38958	0

785.23	a _g	0	0.90646077
799.45	ag	0	0.18077019
799.5	au	1.72128	1.25E-19
804.02	a _g	0	0.05389307
804.53	a _u	0.46396	0
811.62	au	1.81083	0
817.19	ag	0	0.58354766
837.77	a _u	0.01957	6.46E-19
837.81	ag	0	2.74244942
892.09	ag	0	0.18298928
892.71	a _u	5.11296	4.21E-20
903.4	ag	0	0.22717376
903.67	a _u	2.06236	0
904.81	ag	0	0.17651031
905.93	au	0.60957	0
912.52	a _g	0	0.46642921
912.75	a _u	1.93829	0
915.43	ag	0	0.22840431
915.55	au	3.25442	8.15E-20
917.6	a _g	0	1.80759572
918.43	au	4.22842	8.50E-21
919.25	au	8.45375	9.40E-21
919.45	ag	0	0.14605458
944.16	ag	0	0.17995463
944.16	a _u	0.81545	2.86E-18
946.94	au	0.62088	6.46E-21
947.03	ag	0	0.10469536
948.86	au	1.21149	6.40E-20
949.33	ag	0	1.74684586
958.72	ag	0	0.09308935
958.72	a _u	0.44797	1.50E-19
982.16	a _g	0	0.05383845
982.17	au	0.40978	8.53E-19
986.22	au	7.08878	1.12E-19
986.32	ag	0	13.0660567
1004.99	ag	0	0.90712839

1005.33	a _u	0.57575	0
1008.24	au	26.19983	0
1008.53	ag	0	1.8737814
1013.12	a _u	11.60299	0
1014.8	a _g	0	2.24571166
1016.94	au	3.46342	2.93E-21
1017.25	ag	0	0.8439546
1021.02	a _u	0.95626	1.54E-21
1021.53	au	4.25575	9.78E-20
1021.55	ag	0	0.80401484
1021.78	a _g	0	0.40195811
1022.11	au	5.02171	2.39E-19
1022.15	a _g	0	0.49853958
1025.5	a _g	0	0.96334904
1026.29	au	2.81698	0
1027.5	a _u	18.95166	0
1028.2	a _g	0	0.88524858
1030.61	ag	0	0.51411491
1032.44	a _u	5.84518	0
1054.16	au	16.88869	6.54E-20
1054.55	a _g	0	0.44591119
1059.46	a _g	0	0.25833959
1059.6	au	13.32158	7.17E-21
1060.98	a _g	0	6.17228456
1060.98	a _u	7.20615	1.11E-17
1077.21	au	9.82833	2.52E-19
1077.24	a _g	0	0.32975245
1081.88	ag	0	0.21478101
1081.99	au	0.56854	1.19E-19
1149.94	ag	0	0.41390324
1149.94	a _u	0.20165	6.45E-16
1156.01	au	0.26681	0
1157.33	a _g	0	0.04771074
11(2.02			
1163.83	au	0.3343	0
1163.83	a _u a _g	0.3343	0.37474111

1167.76	a_g	0	7.63346762
1169.05	au	10.3849	0
1170.57	a_g	0	3.11271442
1197.71	ag	0	0.19391401
1200.09	au	157.06239	0
1209.38	au	55.2283	0
1209.77	ag	0	0.86371775
1215.42	ag	0	0.69188839
1216.52	au	42.95522	0
1233.27	au	34.91227	0
1233.55	a_g	0	1.15595436
1234.23	ag	0	2.06132265
1234.47	au	0.89422	0
1267.31	au	95.37552	0
1268.5	ag	0	11.0317045
1295.24	ag	0	0.42090569
1295.35	au	0.6025	0
1340.36	ag	0	2.51189203
1340.92	au	16.30748	0
1343.06	au	3.77739	0
1344.09	ag	0	3.90900608
1344.39	ag	0	2.55035619
1344.45	au	35.98777	0
1345.65	ag	0	2.23080775
1346.02	au	3.81803	0
1347.45	ag	0	2.44475044
1347.56	au	1.20065	0
1351.24	au	5.32784	0
1351.66	ag	0	6.08917313
1352.97	ag	0	5.33904606
1353.08	au	1.28102	0
1356.42	ag	0	13.7260927
1356.68	au	12.53604	0
1361.86	ag	0	0.16457655
1361.87	au	0.48992	8.59E-22
1364.2	au	14.79055	0

1364.34	a_g	0	1.00012139
1371.95	ag	0	2.66457276
1373.66	au	8.16707	0
1377.71	au	49.67277	0
1379.22	a_g	0	5.19178976
1390.49	ag	0	0.22619129
1390.82	au	1.25897	2.78E-21
1395.78	au	1.0726	9.05E-21
1395.9	ag	0	0.53376425
1402.46	ag	0	0.43959533
1403.73	a _u	1.78469	0
1404.82	au	1.19721	0
1405.25	a_g	0	0.15675095
1407.71	au	0.77572	0
1408.41	ag	0	0.55368292
1411.78	au	17.44048	0
1413.33	ag	0	2.33497204
1415.01	au	1.64048	8.79E-21
1415.02	a _g	0	0.47581006
1415.39	a _g	0	0.3889774
1415.69	au	6.98622	0
1416.69	au	12.16127	0
1417.1	a_g	0	0.56978553
1419.02	ag	0	0.53609335
1419.82	au	25.86477	0
1423.61	a _g	0	2.20349591
1424.69	au	13.48141	0
1427.58	au	6.66683	0
1428.04	ag	0	0.45012556
1428.97	ag	0	0.68102814
1429.05	au	6.44631	0
1430.34	ag	0	0.64471478
1431.18	au	2.97709	0
1433.14	au	5.50671	0
1434.18	ag	0	1.64994196
1435.79	ag	0	1.1224784

1435.82	a _u	17.94276	2.11E-19
1436.2	a _g	0	1.46839035
1437.45	au	4.42318	0
1437.86	a _u	4.32177	0
1439.14	a _u	3.53874	0
1440.48	a_g	0	1.09732875
1441.58	ag	0	0.33943677
1444.4	ag	0	0.23971444
1444.86	au	9.71496	0
1445.56	a _g	0	0.20992937
1449.8	a _u	13.5063	4.36E-21
1449.97	ag	0	1.40287988
1450.17	au	1.16556	0
1452.87	a _u	2.48423	0
1453.01	ag	0	3.96237795
1454	au	3.75011	0
1454.75	a_g	0	1.40515207
1462.44	au	21.71122	0
1465.36	ag	0	5.43183042
1470.28	ag	0	1.92005978
1470.3	au	15.99083	0
1471.52	a _g	0	0.50579618
1472	au	575.89812	0
1472.1	ag	0	3.6054654
1474.93	au	4.07833	0
1479.04	au	43.16367	0
1479.29	a _g	0	1.24606444
1500.67	ag	0	0.70947796
1501.24	au	16.87563	0
1517.8	au	0.56556	6.89E-21
1518.07	ag	0	57.4295772
1590.26	ag	0	3.22078582
1590.27	au	4.80342	2.07E-18
1617.24	au	13.62369	2.10E-19
1617.37	ag	0	33.1038381
2910.93	au	46.8378	2.10E-19

2910.94	ag	0	3.53479603
2911.9	au	218.84716	0
2912.11	a _g	0	14.3425056
2923.61	au	114.88845	0
2923.68	a _g	0	2.79259698
2926.12	au	108.41494	0
2926.29	a _g	0	3.82790511
2934.01	au	110.56998	0
2934.16	ag	0	1.60436913
2942.64	a _g	0	0.45380886
2942.74	au	24.91893	1.56E-21
2945.67	ag	0	1.13763267
2945.71	a _u	18.86289	1.95E-21
2953.59	au	22.88462	4.10E-20
2953.6	ag	0	2.04724188
2953.78	a _g	0	1.5627679
2953.79	a _u	22.28584	7.74E-21
2958.38	au	109.04958	1.70E-22
2958.46	a _g	0	3.10000683
2960.36	au	94.54597	0
2960.47	ag	0	5.66151535
2986.67	a _g	0	3.7035604
2986.69	a _u	34.86884	1.73E-20
2990.26	ag	0	4.92853404
2990.28	au	30.11886	0
3000.69	ag	0	1.30273649
3000.73	au	30.12997	1.31E-21
3001.52	a _g	0	0.60158484
3001.52	au	17.73553	4.50E-20
3012.14	a _g	0	0.76147666
3012.15	a _u	30.84241	3.90E-21
3013.28	ag	0	1.47415618
3013.28	au	28.54155	5.22E-18
3028.01	a _g	0	0.45075525
3028.02	au	7.78247	1.68E-21
3028.55	a _g	0	0.51986557

3028.6	a _u	50.57439	0
3031.51	a _g	0	0.83743011
3031.55	a _u	19.4127	0
3034.19	au	4.82585	2.54E-22
3034.21	a _g	0	0.14256397
3034.49	ag	0	0.83674352
3034.52	a _u	5.99545	3.06E-21
3036.28	a _u	24.81525	1.86E-21
3036.29	ag	0	1.71248985
3038.25	a _g	0	0.29457708
3038.28	au	41.19416	2.90E-21
3041.17	au	6.93671	6.20E-20
3041.18	a _g	0	0.76544446
3043.09	a _g	0	0.28761636
3043.27	au	70.65415	0
3043.93	au	9.72452	0
3044.06	ag	0	0.84059752
3044.61	au	35.29388	0
3044.71	a _g	0	0.27648679
3045.33	ag	0	0.4465864
3045.38	au	31.46751	0
3072.71	a _g	0	0.22048994
3072.72	au	11.61565	9.47E-20
3078.06	ag	0	0.33365197
3078.06	au	11.03412	1.10E-18
3090.41	ag	0	0.28431997
3090.41	au	1.22603	1.36E-19
3099.3	a _g	0	2.19139526
3099.3	au	6.65961	1.69E-15
3104.61	ag	0	3.5509176
3104.61	a _u	6.68422	3.81E-20
3108.25	au	29.36978	1.54E-19
3108.26	ag	0	6.56250237
3110.08	a _g	0	0.54235989
3110.08	au	1.93676	1.71E-19
3114.48	a _g	0	3.4530502

3114.48	a _u	18.9859	2.75E-18
3119.62	au	31.6032	0
3119.65	ag	0	10.9296644

References

- 1. S. Schäfer, R. Köppe and P. W. Roesky, *Chem. Eur. J.*, 2016, **22**, 7127-7133.
- 2. G. M. Sheldrick, Acta Crystallogr A, 2008, 64, 112-122.
- 3. G. M. Sheldrick, *Acta Crystallogr A Found Adv*, 2015, **71**, 3-8.
- 4. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Crystallogr.*, 2009, **42**, 339-341.
- 5. G. Sheldrick, *Acta Crystallogr. Sect. C*, 2015, **71**, 3-8.