Electronic supplementary information (ESI)

Complexes of In(III) with 8-hydroxyquinoline-5-sulfonate in solution: Structural studies and the effect of cationic surfactants on the photophysical behaviour

M. Luísa Ramos*, Licínia L. G. Justino, Rui Barata, Telma Costa, Hugh D. Burrows

Chemistry Department and Coimbra Chemistry Centre, University of Coimbra, 3004-535 Coimbra, Portugal. E-mail: mlramos@ci.uc.pt; Fax: +351-239-827703; Tel: +351-239-854453

8-HQS

 ${\overset{6'}{C}}{\overset{5'}{C}}{\overset{4'}{C}}{\overset{3'}{2'}}{\overset{2'}{C}}{\overset{1'}{C}}{\overset{$ DTAB n=8 CTAB n=12

DTAB / CTAB

Fig. S1. Expansion 6.5-10 ppm of the ¹H NMR spectra of D_2O solutions of (a) $In^{3+}/8$ -HQS 2.5 : 7.5 mmol dm⁻³, pH 4.25, (b) $In^{3+}/8$ -HQS/CTAB 2.5 : 7.5 : 0.5 mmol dm⁻³, (c) $In^{3+}/8$ -HQS/CTAB 2.5 : 7.5 : 1.0 mmol dm⁻³ (d) $In^{3+}/8$ -HQS/CTAB 2.5 : 7.5 : 5.0 mmol dm⁻³ (e) $In^{3+}/8$ -HQS/CTAB 2.5 : 7.5 : 10 mmol dm⁻³, temp. 298 K. *8-HQS ligand signals.

Fig. S2. Expansion 0-4 ppm of the ¹H NMR spectra of D_2O solutions of (a) CTAB 10 mmol dm-³, pH* 6.87, (b) In³⁺/8-HQS/CTAB 2.5:7.5:0.5 mmol dm-3, (c) In³⁺/8-HQS/CTAB 2.5:7.5:1 mmol dm-³, (d) In³⁺/8-HQS/CTAB 2.5:7.5:5 mmol dm-3 and (e) In³⁺/8-HQS/CTAB 2.5:7.5:10 mmol dm-3, temp. 298 K.

Fig. S3. Expansion 100-180 ppm of the ¹³C NMR spectra of D_2O solutions of (a) $In^{3+}/8$ -HQS 2.5: 7.5 mmol dm⁻³, pH 4.25, (b) $In^{3+}/8$ -HQS/DTAB 2.5 : 7.5 : 2.0 mmol dm⁻³, (c) $In^{3+}/8$ -HQS/DTAB 2.5 : 7.5 : 20 mmol dm⁻³, temp. 298 K.

Fig. S4. Expansion 0-80 ppm of the ¹³C NMR spectra of solutions in D_2O of (a) DTAB 20 mmol dm⁻³, pH 6.04, (b) In³⁺/8-HQS/DTAB 2.5 : 7.5 : 2.0 mmol dm⁻³ (c) In³⁺/8-HQS/DTAB 2.5 : 7.5 : 20 mmol dm⁻³, temp. 298 K.

Fig. S5. Expansion 100-180 ppm of the ¹³C NMR spectra of D_2O solutions of (a) $In^{3+}/8$ -HQS 2.5:7.5 mmol dm-3, pH 4.25 (b) $In^{3+}/8$ -HQS/CTAB 5:10:5.0 mmol dm⁻³, temp. 298 K.

Fig. S6. Expansion 0-80 ppm of the ¹³C NMR spectra of solutions in D_2O of (a) CTAB 10 mmol dm⁻³, pH 6.87, (b) In³⁺/8-HQS/CTAB 2.5 : 7.5 : 10 mmol dm⁻³, temp. 298 K.

Fig. S7. Main excitation contributing to the lowest energy singlet, S_1 , electronic excited sates of the ligand 8-HQS calculated by TD-DFT with the CAM-B3LYP functional.

Table S1. ¹H NMR chemical shifts ^{a)} of CTAB and DTAB as function of their concentrations in solutions of In³⁺/8-HQS

	H-1'	Н-2'	Н-3'	H-4'	Н-5'	H-6'
СТАВ	3.24	3.50	1.86	1.45	1.37	0.95
In ³⁺ /8-HQS/CTAB						
2.5:7.5:0.5 mmol dm ⁻³	2.83	_ b)	_ c)	1.48	1.07 ^{c)}	1.07
2.5:7.5:1.0 mmol dm ⁻³	2.84	_ b)	_ c)	1.48	1.06 ^{c)}	1.07
2.5:7.5:5.0 mmol dm ⁻³	2.85	_ b)	_ c)	1.49	0.95/0.79/	1.05
					0.72/0.62	
2.5:7.5:10 mmol dm ⁻³	2.88	_ b)	_ c)	1.47	0.87/0.81/	1.06
					0.70	
DTAB	3.24	3.48	1.85	1.45	1.36	0.95
In ³⁺ /8-HQS/DTAB						
2.5:7.5:1.0 mmol dm ⁻³	3.12	3.25	1.65	_ d)	1.11/1.04/	0.85
					0.94/0.89	
2.5:7.5:5.0 mmol dm ⁻³	3.02	3.08	1.47	_ d)		0.97
2.5:7.5:10 mmol dm ⁻³	2.94	2.99	1.44	1.36	1.12/1.00/	1.04
					0.89/0.80	
2.5:7.5:20 mmol dm ⁻³	2.93	2.97	1.43	1.36	1.12/0.99/	1.04
					0.85/0.78	

 δ Values, in ppm, in ppm, relative to Me₄Si, using *tert*-butyl alcohol (δ_{H} =1.3) as internal reference. superimposed with the signal of H-1'. a)

b)

c) broad.

d) superimposed with the signal of the reference.