## **Electronic Supplementary Information**

## Enhancement of Cancer-Cell-Selective Cytotoxicity by a Dicopper Complex with Phenanthrene Amide-Tether Ligand Conjugate via Mitochondrial Apoptosis

Machi Hata, Itsuki Saito, Yuki Kadoya, Yoshiki Tanaka, Yutaka, Hitomi, and Masahito Kodera\*

Department of Molecular Chemistry and Biochemistry, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan

\*E-mail: <u>mkodera@mail.doshisha.ac.jp</u>



**Figure S1.** Electronic absorption spectra of **1** (0.25 mM) (blue) and **2** (0.25 mM) (red) in Milli-Q water at room temperature.



**Figure S2.** ESI MS spectrum of **1** measured in H<sub>2</sub>O at room temperature at orifice 1: 10 V, orifice 2: 10 V, ring lens voltage: 10 V.



**Figure S3.** Agarose gel electrophoresis profile of pUC19 DNA (50  $\mu$ M bp) in the presence of **1** (50  $\mu$ M and H<sub>2</sub>O<sub>2</sub> (500  $\mu$ M) at pH 6.0. Lane 1: DNA control; lane 2: DNA with Hind III; lane 3–11: corresponded to the time of 0, 10, 20, 30, 40, 60, 120, 180, and 300 min, respectively.

| Complex<br>(µM) | H2O2<br>(μM) | Time<br>(min) | Form I<br>(%) | Form II<br>(%) | Form III<br>(%) |
|-----------------|--------------|---------------|---------------|----------------|-----------------|
| 50              | 500          | 0             | $92.2\pm0.7$  | $7.8\pm0.7$    | -               |
|                 |              | 10            | $61.9\pm2.1$  | $38.1\pm2.1$   | -               |
|                 |              | 20            | $25.6\pm3.8$  | $74.4\pm3.8$   | -               |
|                 |              | 30            | $9.2\pm3.1$   | $90.8\pm3.1$   | -               |
|                 |              | 40            | $4.7\pm1.7$   | $94.2\pm1.1$   | $1.1\pm0.6$     |
|                 |              | 60            | $0.0\pm0.0$   | $96.3\pm0.2$   | $3.7\pm 0.2$    |
|                 |              | 120           | $0.0\pm0.0$   | $90.2\pm3.8$   | $9.8\pm3.8$     |
|                 |              | 180           | $0.0\pm0.0$   | $77.1\pm4.4$   | $22.9\pm4.4$    |
|                 |              | 300           | $0.0\pm0.0$   | $50.7\pm2.2$   | $49.3\pm2.2$    |

Table S1. Rates (%) of Form I, Form II, and Form III in the reaction of 1 at pH 6.0



**Figure S4.** Pseudo-first-order plot of the decrease of Form I in the reaction of **1** (50  $\mu$ M) (A) or **2** (50  $\mu$ M) (B) with H<sub>2</sub>O<sub>2</sub> (500  $\mu$ M).



Figure S5. (A)Electronic absorption spectra of 1 (0.25 mM) (red) and hydroperoxo species 3 (purple) generated upon reaction with  $H_2O_2$  (10 eq) in MeCN at  $-30^{\circ}$ C. (B)Time courses for the formation of 3 with  $H_2O_2$  (1–50 eq) in MeCN at  $-30^{\circ}$ C, monitored at 340 nm.



**Figure S6.** CSI MS spectrum of **3** formed upon reaction of **1** with  $H_2^{16}O_2$  in  $H_2O$  at 0°C. The orifice 1: 20 V, orifice 2: 5 V, ring lens voltage: 10 V. Experimental conditions: [1] = 0.50 mM,  $[H_2^{16}O_2] = 100$  mM.



**Figure S7.** CSI MS spectrum of **3** formed upon reaction of **1** with  $H_2^{18}O_2$  in  $H_2O$  at 0°C. The orifice 1: 20 V, orifice 2: 5 V, ring lens voltage: 10 V. Experimental conditions: [1] = 0.50 mM,  $[H_2^{18}O_2] = 100$  mM.



Figure S8. (A) Time courses for the decay of 3 monitored at 380 nm at room temperature in the absence (green) and presence (orange) of ct-DNA. (B) Time courses for the decay of 4 monitored at 380 nm at room temperature in the absence (green) and presence (orange) of ct-DNA. All experiments were carried out at least three times.



**Figure S9.** (A) Plots of cell viability vs  $\log[X]$  (X = 1 (blue), 2 (red), HL1 (light green), and HL2 (orange)) in the MTT assay of HeLa cells treated for 24 h. (K) Plots of cell viability vs  $\log[cisplatin]$  in the MTT assay of HeLa cells treated for 24 h. (B) Plots of cell viability vs  $\log[X]$  (X = 1 (blue) and 2 (red)) in the MTT assay of HeLa cells treated for 48 h. (L) Plots of cell viability vs  $\log[cisplatin]$  in the MTT assay of HeLa cells treated for 48 h. (L) Plots of cell viability vs  $\log[cisplatin]$  in the MTT assay of HeLa cells treated for 48 h. (C), (G), (M), (Q), (S) Plots of cell viability vs  $\log[X]$  (X = 1, 2, cisplatin, HL1, and HL2) in the MTT assay of A549 (red) and WI-38 (blue) cells treated for 24 h. (D), (H), (N) Plots of cell viability vs  $\log[X]$  (X = 1, 2, and cisplatin) in the MTT assay of A549 (red) and WI-38 (blue) cells treated for 48 h. (E), (I), (O), (R), (T) Plots of cell viability vs  $\log[X]$  (X = 1, 2, cisplatin, HL1, and HL2) in the MTT assay of PK-59 (red) and 2C6 (blue) cells treated 24 h. (F), (J), (P) Plots of cell viability vs  $\log[X]$  (X = 1, 2, and cisplatin) in the MTT assay of PK-59 (red) and 2C6 (blue) cells treated 24 h. All experiments were carried out at least three times.

|           | IC <sub>50</sub> (μM) (Mean ± SD) |                |                |               |                |  |
|-----------|-----------------------------------|----------------|----------------|---------------|----------------|--|
| Complex   | Cervical                          | Lung           |                | Pancreas      |                |  |
|           | HeLa                              | A549           | WI-38          | PK-59         | 2C6            |  |
|           | (cancer)                          | (cancer)       | (normal)       | (cancer)      | (normal)       |  |
| 1         | $156 \pm 1$                       | $91.6\pm10.0$  | $269\pm5$      | $110\pm3$     | $238\pm8$      |  |
| 2         | $1{,}740\pm110$                   | $1,\!430\pm40$ | $2,\!960\pm30$ | $1,060 \pm 0$ | $3,340 \pm 10$ |  |
| HL1       | > 1,000                           | > 1,000        | > 1,000        | > 1,000       | > 1,000        |  |
| HL2       | > 10,000                          | > 10,000       | > 1,000        | > 10,000      | > 10,000       |  |
| cisplatin | $2.33\pm0.23$                     | $5.35\pm0.82$  | $6.33\pm0.13$  | $2.66\pm0.85$ | $3.16\pm0.12$  |  |

Table S2. In vitro toxicity of 1 and 2 against various cancer and normal cellsby means of MTT assay (24 h)



Figure S10. Cellular uptake of 1 and 2 (25  $\mu$ M) in HeLa cells (2.5  $\times$  10<sup>5</sup> cells/mL) after incubation for 24 h and 48 h.



**Figure S11.** (A)–(D) Confocal microscopic images of **1** (200  $\mu$ M) in HeLa cells on 1 h incubation in the dark. (A) Bright-field images. (B) Blue fluorescence indicates the fluorescence of **1**. (C) Red fluorescence indicates mitochondrial staining of Mitotracker Deep Red FM (50 nM) (Thermofisher). (D) Overlay images of (A)–(C). Scale bar is 20  $\mu$ m.



Annexin V-FITC

**Figure S12.** Induction of apoptosis by **1** and **2**. Annexin V-FITC and PI fluorescence were measured by flow cytometry. Representative dot plots of dose-dependent effect of **1** and **2** (800  $\mu$ M) on apoptosis of HeLa cells treated for 1 h and 12 h. A total of 10,000 cells were collected per sample.

|         |          | Rate of cells (%) |             |             |                |
|---------|----------|-------------------|-------------|-------------|----------------|
| Complex | Time (h) | Q1                | Q2          | Q3          | Q4             |
|         |          | (FITC - /PI+)     | (FITC+/PI+) | (FITC+/PI-) | (FITC - /PI -) |
| None    |          | 1.1               | 1.2         | 10.6        | 87.1           |
| 1       | 1        | 4.4               | 7.2         | 5.0         | 83.4           |
|         | 12       | 5.0               | 8.9         | 18.5        | 67.6           |
| 2       | 1        | 0.7               | 1.2         | 8.2         | 89.9           |
|         | 12       | 1.9               | 5.5         | 11.0        | 81.6           |

Table S3. Rates (%) of Induction of apoptosis by 1 and 2 against HeLa cells.



**Figure S13.** Caspase-9 activity in HeLa cells measured using a caspase fluorometric assay kit when treated with **1** (IC<sub>50</sub>: 816  $\mu$ M) (blue) and **2** (IC<sub>50</sub>: 1740  $\mu$ M) (red) for 1 and 12 h. Results are shown as the mean  $\pm$  SD from five independent experiments. (\*\*p < 0.001; two-tailed Student's t-test)



Figure S14. Caspase-9 activity in HeLa cells measured using a caspase fluorometric assay kit when treated with 1 (IC<sub>50</sub>: 816  $\mu$ M) (blue) and 2 (IC<sub>50</sub>: 1740  $\mu$ M) (red) for 12 h in the absence and the presence of Z-VAD-FMK. Results are shown as the mean  $\pm$  SD from five independent experiments. (\*\*p < 0.001; two-tailed Student's t-test)



**Figure S15.** Caspase-3/7 activity in HeLa cells measured using a caspase fluorometric assay kit when treated with **1** (IC<sub>50</sub>: 816  $\mu$ M) (blue) and **2** (IC<sub>50</sub>: 1740  $\mu$ M) (red) for 1 and 12 h. Results are shown as the mean  $\pm$  SD from five independent experiments. (\*\*p < 0.001; two-tailed Student's t-test)



Figure S16. Emission spectra ( $\lambda_{ex} = 315 \text{ nm}$ ) of 1 (0.25 mM) in Milli-Q water at 37°C.



Figure S17. Time courses for the decrease of percent of Form I (A), and the increase of percent of Form III (B) upon reaction of pUC19 DNA (50  $\mu$ M bp) with 1 (50  $\mu$ M) in the presence of H<sub>2</sub>O<sub>2</sub> (0, 50, 100, 500  $\mu$ M) at pH 6.0 (MES, 10 mM) at 37°C. Experiments were carried out at least three times.



**Figure S18**. Time courses for the decrease of percent of Form I (A), and the increase of percent of Form III (B) upon reaction of pUC19 DNA (50  $\mu$ M bp) with 1 (0, 12.5, 25, 50  $\mu$ M) in the presence of H<sub>2</sub>O<sub>2</sub> (500  $\mu$ M) at pH 6.0 (MES, 10 mM) at 37°C. Experiments were carried out at least three times.



**Figure S19**. Electronic absorption spectra of **1** (0.25 mM) (red) and hydroperoxo species **3** (purple) generated upon reaction with  $H_2O_2$  (200 eq) in Milli-Q water at 0°C. (inset: time courses for the formation and decay of **1** monitored at 390 nm at 0°C (orange)).

| Complex | Time (h) | [Cu in the cell]/[Cu in the medium during treatment] |  |
|---------|----------|------------------------------------------------------|--|
|         |          | (%)                                                  |  |
| 1       | 24       | 0.31                                                 |  |
|         | 48       | 4.38                                                 |  |
| 2       | 24       | 0.16                                                 |  |
|         | 48       | 2.04                                                 |  |

Table S4. The rate of [Cu in the cell]/[Cu in the medium during treatment]