Supporting Information

Regulating the magnetic properties of seven-coordinated Dy(III) single-ion magnets through the effect of positional isomers on axial crystal-field

Yubao Dong,†^a Li Zhu,†^a Bing Yin,*^b Xinrui Zhu^a and Dongfeng Li *^a

 ^a Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
 ^b Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Lab of Molecular Magnetism College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China

Table of contents

X-ray crystallographic data	S3
X-ray powder diffraction and IR spectra	S7
Crystal structures	S8
Magnetic measurements	S10
Fitting for the complexes	S21
Magnetization hysteresis	S24
Fitting parameters	S25
Theoretical analysis	S31
The ¹ H NMR and ¹³ C spectra of n-OMe-H ₂ bbpen	S33

X-ray crystallographic data

Complex	1	3	5
Formula	$C_{30}H_{32}ClDyN_4O_4$	$C_{30}H_{32}ClDyN_4O_4\\$	C ₃₀ H ₃₂ ClDyN ₄ O ₄
Formula weight	710.54	710.54	710.54
Temperature / K	296	296	296
Crystal system	Orthorhombic	Monoclinic	Orthorhombic
Space group	$P2_{1}2_{1}2_{1}$	<i>C</i> 2/ <i>c</i>	Pbcn
<i>a</i> / Å	8.6071 (13)	21.062 (2)	8.6217 (12)
<i>b</i> / Å	17.845 (3)	9.5266 (10)	17.052 (2)
<i>c</i> / Å	18.836 (3)	15.5658 (14)	19.783 (3)
α / °	90	90	90
eta/ °	90	114.012 (4)	90
γ / °	90	90	90
$V/\text{\AA}^3$	2893.1 (8)	2853.0 (5)	2908.5 (7)
Ζ	4	4	4
<i>F</i> (000)	1420	1420	1420
$D_{ m calc}$ /Mg m ⁻³	1.631	1.654	1.623
Mo Kα /Å	0.71073	0.71073	0.71073
$R_1[I \ge 2\sigma(I)]$	0.0154	0.0232	0.0279
$wR_2[I \ge 2\sigma(I)]$	0.0368	0.0470	0.0559
R_{l} , (all data)	0.0162	0.0263	0.0431
wR_2 , (all data)	0.0371	0.0485	0.0641
μ / mm ⁻¹	2.72	2.76	2.70
<i>R</i> _{int}	0.021	0.040	0.030
Collected reflections	22377	23382	24106
Unique reflections	5894	4398	3528
Goodness-of-fit on F^2	1.14	1.06	1.26

 Table S1a. Crystallographic data and structure refinement parameters for 1, 3 and 5.

Complex	2	4	6
Formula	$C_{30}H_{32}BrDyN_4O_4\\$	$C_{30}H_{32}BrDyN_4O_4\\$	$C_{30}H_{32}ClDyN_4O_4\\$
Formula weight	755.00	755.00	710.54
Temperature / K	296	296	296
Crystal system	Orthorhombic	Monoclinic	Orthorhombic
Space group	$P2_{1}2_{1}2_{1}$	<i>C</i> 2/ <i>c</i>	Pbcn
<i>a</i> / Å	8.5766 (7)	20.971 (2)	8.6618 (8)
<i>b</i> / Å	18.0373 (14)	9.7062 (11)	17.2729 (16)
<i>c</i> / Å	18.8912 (15)	15.6099 (17)	19.7054 (18)
α / °	90	90	90
eta/ °	90	113.913	90
γ / °	90	90	90
$V/\text{\AA}^3$	2922.4 (4)	2904.7 (6)	2948.2 (5)
Ζ	4	4	4
<i>F</i> (000)	1492	1492	1492
D_{calc} /Mg m ⁻³	1.716	1.726	1.701
Mo Kα /Å	0.71073	0.71073	0.71073
$R_1[I \ge 2\sigma(I)]$	0.0220	0.0182	0.0292
$wR_2[I \ge 2\sigma(I)]$	0.0463	0.0472	0.0583
R_{l} , (all data)	0.0261	0.0208	0.0417
wR_2 , (all data)	0.0475	0.0486	0.0650
μ / mm ⁻¹	3.97	3.99	3.93
<i>R</i> _{int}	0.030	0.026	0.033
Collected reflections	20494	12319	43412
Unique reflections	5169	3476	3028
Goodness-of-fit on F^2	1.07	1.12	1.17

 Table S1b. Crystal data and structure refinement parameters for 2, 4 and 6.

Bond distances (Å)					
Con	plex 1	Comp	olex 2		
Dy(1)-Cl(1)	2.6647 (8)	Dy(1)-Br(1)	2.8412 (5)		
Dy(1)-O(1)	2.156 (2)	Dy(1)-O(1)	2.135 (3)		
Dy(1)-O(2)	2.153 (2)	Dy(1)-O(2)	2.150 (3)		
Dy(1)-N(1)	2.558 (3)	Dy(1)-N(1)	2.563 (4)		
Dy(1)-N(2)	2.603 (2)	Dy(1)-N(2)	2.599 (4)		
Dy(1)-N(3)	2.596 (2)	Dy(1)-N(3)	2.588 (4)		
Dy(1)-N(4)	2.571 (3)	Dy(1)-N(4)	2.599 (4)		
Con	nplex 3	Comp	olex 4		
Dy(1)-Cl(1)	2.6294 (7)	Dy(1)-Br(1)	2.7892 (4)		
Dy(1)-O(1)	2.1697 (14)	Dy(1)-O(1)	2.1666 (17)		
Dy(1)-N(1)	2.5440 (17)	Dy(1)-N(1)	2.5610 (18)		
Dy(1)-N(2)	2.5854 (16)	Dy(1)-N(2)	2.5770 (17)		
Con	nplex 5	Complex 6			
Dy(1)-Cl(1)	2.6641 (11)	Dy(1)-Br(1)	2.8228 (6)		
Dy(1)-O(1)	2.165 (2)	Dy(1)-O(1)	2.155 (3)		
Dy(1)-N(1)	2.586 (3)	Dy(1)-N(1)	2.595 (4)		
Dy(1)-N(2)	2.579 (3)	Dy(1)-N(2)	2.570 (3)		
	Bond an	gles (°)			
Con	plex 1	Complex 2			
O1-Dy1-O2	157.02 (9)	O1-Dy1-O2	157.79 (13)		
O1-Dy1-Cl1	99.48 (6)	O1-Dy1-Br1	104.28 (9)		
O1-Dy1-N1	89.72 (9)	O1-Dy1-N1	92.37 (14)		
01-Dy1-N2	84.23 (8)	O1-Dy1-N2	76.99 (13)		
O2-Dy1-Cl1	103.49 (6)	O2-Dy1-Br1	97.89 (9)		
O2-Dy1-N1	93.19 (9)	O2-Dy1-N1	89.78 (14)		
O2-Dy1-N2	76.41 (8)	O2-Dy1-N2	83.97 (13)		
O2-Dy1-N3	85.05 (8)	O2-Dy1-N3	76.62 (12)		
O2-Dy1-N4	88.09 (9)	O2-Dy1-N4	97.05 (14)		

Table S2. Selected bond distances (Å) and bond angles (°) for 1-6.

N1-Dy1-Cl1	80.76 (7)	N1-Dy1-Br1	80.72 (10)
N1-Dy1-N3	132.81 (9)	N1-Dy1-N3	132.91 (14)
N1-Dy1-N4	161.59 (10)	N1-Dy1-N4	161.68 (15)
N2-Dy1-Cl1	145.74 (6)	N2-Dy1-Br1	145.64 (9)
N3-Dy1-Cl1	145.44 (6)	N3-Dy1-Br1	145.11 (9)
N4-Dy1-Cl1	81.08 (7)	N4-Dy1-Br1	81.50 (10)
N4-Dy1-N2	132.69 (9)	N4-Dy1-N2	132.54 (13)
Comp	lex 3	Comp	lex 4
O1-Dy1-O1A	170.65 (7)	O1-Dy1-O1A	171.58 (8)
O1-Dy1-Cl1	94.68 (4)	O1-Dy1-Br1	94.21 (4)
O1-Dy1-N1	101.98 (6)	O1-Dy1-N1	101.73 (7)
O1-Dy1-N2	74.17 (5)	O1-Dy1-N2	74.40 (6)
O1A-Dy1-N2	97.97 (6)	O1A-Dy1-N2	98.52 (6)
N1-Dy1-Cl1	85.23 (4)	N1-Dy1-Br1	85.24 (4)
N1-Dy1-N1A	170.45 (7)	N1-Dy1-N1A	170.47 (8)
N2-Dy1-Cl1	145.41 (4)	N2-Dy1-Br1	145.31 (4)
Comp	lex 5	Comp	lex 6
O1-Dy1-O1A	157.44 (12)	O1-Dy1-O1A	158.29 (14)
O1-Dy1-Cl1	101.28 (6)	O1-Dy1-Br1	100.86 (7)
O1-Dy1-N1	97.04 (10)	O1-Dy1-N1	96.60 (11)
O1-Dy1-N2	77.51 (9)	O1-Dy1-N2	77.82 (10)
O1A-Dy1-N2	84.00 (9)	O1A-Dy1-N2	84.39 (10)
N1-Dy1-Cl1	80.59 (6)	N1-Dy1-Br1	80.63 (7)
N1-Dy1-N1A	161.17 (13)	N1-Dy1-N1A	161.25 (14)
N2-Dy1-Cl1	145.08 (6)	N2-Dy1-Br1	145.03 (7)

X-ray powder diffraction and IR spectra

Figure S1. PXRD patterns of complexes 1–6.

Figure S2. Infrared spectra of complexes1–6.

Crystal structures

Figure S3. The crystal packing modes of 1-6 ((a) along *a* axis direction, (b) along *b* axis direction), where weak intermolecular interactions (red dashed lines) are included.

Configuration	1	2	3	4	5	6
Heptagon (D _{7h})	33.903	34.091	34.687	34.749	33.762	34.007
Hexagonal pyramid (C_{6v})	23.303	23.516	21.419	21.812	23.181	23.361
Pentagonal bipyramid (D _{5h})	1.895	2.277	4.032	4.327	1.866	2.152
Capped octahedron (C_{3v})	7.607	8.001	4.339	4.617	8.493	8.849
Capped trigonal prism (C_{2v})	6.189	6.546	3.491	3.768	6.709	7.010
Johnson pentagonal bipyramid J13 (D _{5h})	2.267	2.331	5.154	5.222	2.281	2.332
Johnson elongated triangular pyramid J7 (C_{3v})	21.998	22.54	21.294	21.783	21.154	21.752

Table S3. The calculated results for Dy^{III} ions configuration of complexes **1–6** by SHAPE 2.0 Software.

Figure S4. Polyhedrons around Dy^{III} ion for complexes 1–6.

Magnetic measurements

Figure S5. The variable-temperature magnetic susceptibilities of **1**, **3** and **5**. Solid lines correspond to the *ab initio* calculation results.

Figure S6. Field dependent magnetization data for complexes **1–6** at 2 K. Data were collected from 0 to 70 kOe in steady fields. Solid lines correspond to the *ab initio* calculation results.

Figure S7. Temperature-dependence of in-phase (χ') and out-of-phase (χ'') ac susceptibility of **1–6** in zero dc field.

Figure S8. Temperature-dependence of in-phase (χ') and out-of-phase (χ'') ac susceptibility of **1–6** under 1500 Oe applied dc field.

Figure S9. Frequency dependence of the in-phase (χ') and out-of-phase (χ'') ac susceptibility of complexes 1–6 in zero dc field.

Figure S10. Frequency dependence of the in-phase (χ') and out-of-phase (χ'') ac susceptibility of complexes 1–6 under 1500 Oe applied dc field.

Fitting for the complexes

Figure S11. Cole-Cole plots for complexes 1, 3 and 5. The solid lines are the best fits for the generalized Debye model ($0 < \alpha < 0.32$).

Figure S12. Cole-Cole plots of complexes **2**, **4** and **6** measured at low temperature (below 35 K). The solid lines are the best fits for the generalized Debye model ($0 < \alpha < 0.19$).

Figure S13. Temperature dependence of the magnetic relaxation time (τ) under zero dc field are shown as $\ln(\tau)$ versus T^{-1} for 1, 3, and 5. The blue dashed line and red solid line represent part of the Orbach process and the best fitting based on Arrhenius law, respectively.

Magnetization hysteresis

Figure S14. FC and ZFC measurements for 1–6 under 2 kOe applied dc field.

Figure S15. Magnetic hysteresis loops were measured at a sweep rate of 0.02 T s⁻¹ of complexes 1–6.

Fitting parameters

Table S4.	. Best fit	parameters	of the	generalized	Debye	model	at temperature	ranging from	2 to 55 K
under a 0	Oe DC fi	eld for 1.							

T / K	$\chi_{\rm S}$ / cm ³ mol ⁻¹ K	$\chi_T / cm^3 mol^{-1}K$	τ/s	α
2	0.21573	9.51054	0.128640	0.31819
3	0.14973	6.23459	0.123530	0.31627
5	0.09934	3.75124	0.119610	0.31528
8	0.07411	2.30463	0.101900	0.29434
11	0.06661	1.58686	0.067400	0.22944
14	0.06019	1.18132	0.040840	0.15476
17	0.05233	0.94462	0.025780	0.10181
20	0.04476	0.79064	0.017070	0.06888
23	0.03762	0.6831	0.011630	0.04992
26	0.03322	0.60196	0.008140	0.035
29	0.02904	0.54026	0.005850	0.02676
32	0.02602	0.48948	0.004290	0.01963
35	0.02343	0.44781	0.003210	0.01514
38	0.02246	0.41218	0.002430	0.00871
41	0.02045	0.38206	0.001840	0.00672
44	0.01766	0.35667	0.001340	0.00657
45	0.01871	0.34844	0.001190	0.0028
46	0.01785	0.34132	0.001040	0.00433
47	0.01774	0.3342	0.000885	0.00357
48	0.01625	0.32741	0.000738	0.00506
49	0.01601	0.32091	0.000603	0.00439
50	0.01466	0.31453	0.000481	0.00518
51	0.0123	0.30875	0.000375	0.00873
52	0.01432	0.30275	0.000290	0.00584
53	0.01361	0.29709	0.000219	0.00616
54	0.01626	0.29174	0.000164	0.00704
55	0.0102	0.28666	0.000118	0.01408

T / K	χ_S / cm ³ mol ⁻¹ K	χ_T / cm ³ mol ⁻¹ K	τ/s	α
17	0.0588584	1.05779	0.448384	0.145317
20	0.0513882	0.783125	0.203405	0.0921734
23	0.0461892	0.654362	0.116269	0.0623435
26	0.0414993	0.568407	0.0728741	0.0456349
29	0.0381685	0.505894	0.0488129	0.0376772
32	0.0350577	0.457169	0.0337935	0.0310743
35	0.032783	0.417399	0.0243553	0.026734
38	0.0305499	0.383597	0.0178845	0.0238394
41	0.0281754	0.354938	0.0133699	0.0240602
44	0.0276068	0.330133	0.010086	0.0182577
47	0.0260556	0.310496	0.00747244	0.023527
50	0.025213	0.290988	0.00495633	0.0210496
51	0.0251768	0.287005	0.00420339	0.0254486
52	0.0252969	0.280379	0.00344103	0.0201953
53	0.0255142	0.275296	0.00276712	0.0200261
54	0.0258332	0.271225	0.00217648	0.023181
55	0.0268594	0.265314	0.00167874	0.0138113
56	0.0259721	0.260015	0.00125498	0.0147009
57	0.0258266	0.256733	0.000941912	0.0166888
58	0.0263898	0.252126	0.000696406	0.0135946
59	0.0255876	0.247925	0.000513543	0.0142742
60	0.0260131	0.243281	0.000376531	0.00999408
61	0.0275882	0.23968	0.000279303	0.0108217
62	0.0283449	0.235847	0.000205959	0.00862397
63	0.0225348	0.232689	0.000146052	0.0235729
64	0.0229242	0.228224	0.000108188	0.0145579

Table S5. Best fit parameters of the generalized Debye model at temperature ranging from 17 to 64 K under a 0 Oe DC field for **2**.

T / K	χ_S / cm ³ mol ⁻¹ K	$\chi_T / cm^3 mol^{-1}K$	τ/s	α
2	0.27645	6.05126	0.002760	0.14098
3	0.18636	4.03826	0.002820	0.14501
5	0.11639	2.45356	0.002770	0.15025
8	0.07507	1.54392	0.002640	0.15333
11	0.05543	1.12978	0.002490	0.15239
14	0.04654	0.8897	0.002250	0.13819
17	0.04174	0.73228	0.001920	0.11373
20	0.03612	0.62249	0.001540	0.09004
23	0.03232	0.54033	0.001200	0.06698
26	0.02751	0.47783	0.000917	0.05252
29	0.02288	0.42891	0.000702	0.04272
32	0.01856	0.3888	0.000542	0.03643
33	0.019	0.37699	0.000500	0.03271
34	0.01888	0.36591	0.000462	0.02993
35	0.01779	0.35591	0.000427	0.02951
36	0.0165	0.34615	0.000395	0.02823
37	0.01555	0.33689	0.000366	0.02657
38	0.01542	0.32838	0.000340	0.02626
39	0.0153	0.3197	0.000316	0.02367
40	0.01371	0.31219	0.000294	0.02554
41	0.01207	0.30515	0.000273	0.0275
42	0.01344	0.29718	0.000255	0.02199
43	0.01522	0.29054	0.000239	0.02092
44	0.01236	0.28399	0.000222	0.02019
45	0.01348	0.27788	0.000207	0.02031

Table S6. Best fit parameters of the generalized Debye model at temperature ranging from 2 to 45 K under a 0 Oe DC field for **3**.

T / K	χ_{S} / cm ³ mol ⁻¹ K	$\chi_T / cm^3 mol^{-1}K$	τ / s	α
2	0.21447	6.9676	0.020540	0.19331
3	0.15271	4.64842	0.020910	0.19667
5	0.09829	2.82291	0.020370	0.19889
8	0.06771	1.77403	0.018180	0.19722
11	0.05681	1.29042	0.015440	0.18204
14	0.05101	1.00874	0.012400	0.15301
17	0.04483	0.82494	0.009520	0.1208
20	0.03947	0.69822	0.007200	0.09419
23	0.03625	0.6031	0.005400	0.06812
26	0.03088	0.53339	0.004080	0.05556
29	0.02829	0.47796	0.003120	0.04293
32	0.02628	0.43197	0.002420	0.03275
35	0.02255	0.39611	0.001900	0.03138
38	0.02126	0.36525	0.001520	0.02598
41	0.02001	0.33831	0.001230	0.02129
44	0.01825	0.31582	0.001000	0.02064
47	0.01848	0.29621	0.000830	0.01797
50	0.01656	0.27779	0.000677	0.01752
51	0.01653	0.2727	0.000635	0.01763
52	0.0164	0.26744	0.000592	0.01701
53	0.01713	0.26313	0.000556	0.01796
54	0.01551	0.25765	0.000513	0.01729
55	0.0151	0.25296	0.000475	0.01685
56	0.01798	0.24872	0.000444	0.01366
57	0.01561	0.24443	0.000404	0.01832
58	0.01532	0.24051	0.000368	0.01982
59	0.01859	0.23649	0.000339	0.01661
60	0.01817	0.23247	0.000304	0.01722
61	0.01782	0.22871	0.000272	0.01564
62	0.01802	0.22514	0.000239	0.01834
63	0.01779	0.22127	0.000209	0.01467
64	0.01812	0.21886	0.000181	0.02334
65	0.01951	0.21534	0.000155	0.02441

Table S7. Best fit parameters of the generalized Debye model at temperature ranging from 2 to 65 K under a 0 Oe DC field for **4**.

T / K	χ_{S} / cm ³ mol ⁻¹ K	$\chi_T / cm^3 mol^{-1}K$	τ/s	α
2	0.03678	7.61596	0.168200	0.22986
3	0.0262	5.00147	0.163780	0.23383
5	0.01826	2.99042	0.158570	0.2347
8	0.0147	1.85555	0.140680	0.22628
11	0.01419	1.32824	0.110970	0.19559
14	0.01402	1.00677	0.076560	0.14669
17	0.01323	0.80335	0.051780	0.10215
20	0.01226	0.66811	0.035770	0.07025
23	0.01072	0.57593	0.025280	0.04967
26	0.00926	0.50836	0.018170	0.04013
29	0.00886	0.45478	0.013170	0.02655
32	0.00821	0.41132	0.009730	0.02068
35	0.00686	0.3757	0.007220	0.01627
38	0.00757	0.34579	0.005430	0.00919
41	0.00666	0.32039	0.004000	0.00843
44	0.00643	0.29928	0.002720	0.00811
45	0.0063	0.29289	0.002320	0.00768
46	0.00516	0.28714	0.001920	0.01014
47	0.00602	0.28137	0.001550	0.01017
48	0.00595	0.27514	0.001220	0.01243
49	0.00521	0.26954	0.000931	0.01545
50	0.00296	0.26464	0.000694	0.02247
51	0.00371	0.25979	0.000515	0.02302
52	0.00246	0.2546	0.000374	0.02564
53	0.00162	0.24988	0.000271	0.02645
54	0.00359	0.24565	0.000198	0.02929
55	0.00555	0.24129	0.000144	0.02912

Table S8. Best fit parameters of the generalized Debye model at temperature ranging from 2 to 55 K under a 0 Oe DC field for **5**.

T / K	χ_S / cm ³ mol ⁻¹ K	$\chi_T / cm^3 mol^{-1}K$	τ/s	α
17	0.01416	1.37147	1.340440	0.11442
20	0.01323	0.82233	0.464970	0.07125
23	0.01226	0.69349	0.261810	0.05616
26	0.01182	0.59005	0.154530	0.04323
29	0.01117	0.52463	0.098120	0.03449
32	0.01076	0.47171	0.065260	0.03135
35	0.01058	0.428	0.044520	0.0227
38	0.01051	0.39213	0.031590	0.01778
41	0.00987	0.36375	0.022880	0.02032
44	0.00983	0.34093	0.016660	0.0211
47	0.00988	0.31757	0.011540	0.01773
50	0.0105	0.29833	0.007160	0.01633
51	0.01058	0.29159	0.005830	0.01489
52	0.01094	0.28702	0.004670	0.01735
53	0.01156	0.28074	0.003620	0.0111
54	0.01103	0.27597	0.002760	0.01414
55	0.01227	0.27063	0.002080	0.01011
56	0.01241	0.26624	0.001540	0.00888
57	0.0124	0.26116	0.001130	0.00743
58	0.01239	0.25695	0.000825	0.00589
59	0.01278	0.25333	0.000605	0.0071
60	0.01311	0.2486	0.000441	0.00389
61	0.01257	0.24468	0.000323	0.00354
62	0.01326	0.24044	0.000237	0.00113
63	0.01388	0.23718	0.000174	0.0074
64	0.01564	0.23328	0.000131	4.31×10^{-14}
65	0.01598	0.22984	0.000096	6.61×10^{-14}

Table S9. Best fit parameters of the generalized Debye model at temperature ranging from 17 to 65 K under a 0 Oe DC field for **6**.

Theoretical analysis

Table S10. Decomposition of the wavefunctions of lowest-lying KDs in terms of the components of the ground ${}^{6}\text{H}_{15/2}$ multiplet of Dy^{III}, the key diagonal crystal field parameter (CFP) B(2,0) and non-diagonal CFP B(2,2).

	KD ₀	KD ₁	KD ₂	B(2,0)	B(2,2)	ESP ratio
1	±15/2>, 99.90%	±13/2>, 98.54%	±11/2>, 78.32%	-4.340	1.187	1.180
2	±15/2>, 99.94%	±13/2>, 99.34%	±11/2>, 93.93%	-4.962	0.533	1.261
3	±15/2>, 99.54%	±13/2>, 97.98%	±11/2>, 86.27%	-5.308	0.960	1.153
4	±15/2>, 99.62%	±13/2>, 98.49%	±11/2>, 92.81%	-5.654	0.352	1.205
5	±15/2>, 99.91%	±13/2>, 98.91%	±11/2>, 80.07%	-4.361	1.391	1.196
6	±15/2>, 99.94%	±13/2>, 99.46%	±11/2>, 94.15%	-4.819	0.803	1.262

Figure S16 Direct comparison between experimental and theoretical τ_{QTM} of 1 and 3 – 5.

Figure S17 Quantitative results of U_{eff}^{Zee} within the framework of TA-QTM of 2 (a) and 6 (b).

The ¹H NMR and ¹³C spectra of n-OMe-H₂bbpen

Figure S18 ¹H NMR spectra of **3-OMe-H₂bbpen** in CDCl₃ at room temperature.

Figure S19 ¹³C NMR spectra of **3-OMe-H₂bbpen** in CDCl₃ at room temperature.

Figure S20 ¹H NMR spectra of 4-OMe-H₂bbpen in CDCl₃ at room temperature.

Figure S21 ¹³C NMR spectra of 4-OMe-H₂bbpen in CDCl₃ at room temperature.

Figure S22 ¹H NMR spectra of 5-OMe-H₂bbpen in CDCl₃ at room temperature.

Figure S23 ¹³C NMR spectra of 5-OMe-H₂bbpen in CDCl₃ at room temperature.