Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2021

Electronic Supplementary Information (ESI) Micro-Engineering the Grain Boundary of NiCo₂O₄/NiCo₂S₄

Nanowire Arrays to Achieve the Enhanced Charge Storage

Mengqi Cui^a, Zining Wang^a, Hui Wang^{*a}, Xuyun Wang^a, Jianwei Ren^{**b}

^a State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical

Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China

^bDepartment of Mechanical Engineering Science, University of Johannesburg, Cnr Ki ngsway and University Roads, Auckland Park, 2092, Johannesburg, South Africa.

Corresponding Author

Hui Wang (*): wangh@qust.edu.cn

Jianwei Ren (**): jren@uj.ac.za

Physical characterization

Crystal structure of as-prepared samples was studied on a Shimadzu XD-3A diffractometer where XRD patterns were recorded at 10 ° min⁻¹ using Cu- K α radiation with λ =0.15418 nm. Their microstructure was investigated on a Carl Zeiss scanning electron microscope and a JEOL (JEM-2000 FX) transmission electron microscope.

High angle annular dark field scanning transmission electron microscopy (STEM) images of the catalysts were taken using the same JEOL instrument operating at 200 kV. X-ray photoelectron spectroscopy (XPS) was carried out on a PHI-5702 spectrometer and C1 s peak at 285.0 eV was used as a reference for binding energies calibration.

Electrochemical measurements

Electrochemical performance of as-prepared NiCo₂O₄/NiCo₂S₄ was studied using a CHI 660E electrochemical workstation. The experiments were carried out in a threeelectrode configuration with a 1×1 cm² sample, activated carbon (AC) and Hg/HgO (1.0 M KOH) serving as a working electrode, a counter electrode and a reference electrode respectively. Cyclic voltammetry (CV) graphs were recorded in a three- and a two-electrode systems in 1 M KOH aqueous electrolytes. Galvanostatic charge/discharge (GCD) and cycling tests were conducted using a LAND CT2001A battery measurement system. Areal specific capacity (C_a), energy density (E) and power density (P) were calculated according to the following equations:

 $C_{a} = 2I \times \int V \, dt / (A \times V) \quad (1)$ $E = C_{m} \times (\Delta V)^{2} / 2 \quad (2)$ $P = E / \Delta t \quad (3)$

where *I*, *t*, m, ΔV , and A represent discharge current (mA), discharge time (s), total mass of active materials (g), electrode potential window (V), and electrode surface area (cm²) respectively.

Prior to assembly of the asymmetric supercapacitor, mass loadings of both cathode

and anode were balanced according to the following equation:

$$m^{+}/m^{-} = C^{-} \times \Delta E^{-}/(C^{+} \times \Delta E^{+})$$
(4)

where mass ratio of cathode to anode particles was set at 0.3.

Fig. S1 (a, b) SEM and (c) TEM of NiCo₂O₄ rods.

Fig. S2 N₂ isotherms of all samples.

Fig. S3 CV(a), GCD(b) and area specific capacitance vs. current density curves(c) of $NiCo_2O_4$.

Fig. S4 (a) CV curves of NiCo₂O₄/NiCo₂S₄-0 at various scan rates; (b) GCD curves of NiCo₂O₄/NiCo₂S₄-0 at different current densities; (c) CV curves of NiCo₂O₄/NiCo₂S₄-30 at various scan rates; (d) GCD curves of NiCo₂O₄/NiCo₂S₄-30 at different current densities. (e) CV curves of NiS₂/NiCo₂S₄ at various scan rates; (d) GCD curves of NiS₂/NiCo₂S₄ at various scan rates; (d) GCD curves of NiS₂/NiCo₂S₄ at various scan rates; (d) GCD curves of NiS₂/NiCo₂S₄ at different current densities.

Fig. S5 EIS of all the samples.

Fig. S6 (a) XPS survey spectrum, (b) S atomic content based on the integral area from

a, and (c) the fitted S 2p XPS of the all samples.

Fig. S7 The fitted Ni 2p XPS and Co 2p XPS spectra of the samples.

Samples	Rct(ohm)	Zw(ohm)
NiCo ₂ O ₄	1.051	2.087
NiCo ₂ O ₄ /NiCo ₂ S ₄ -0	1.072	3.393
NiCo ₂ O ₄ /NiCo ₂ S ₄ -10	1.046	5.269
NiCo ₂ O ₄ /NiCo ₂ S ₄ -30	1.045	4.79
NiS ₂ / NiCo ₂ S ₄	1.067	4.69

Table S1. The fitted impedance from EIS of all the samples.

Table S2. The conductivity of the samples.

Samples	Square resistance/mΩ	Conductivity/KS/mm
NiCo ₂ O ₄	6.05495	0.10898
NiCo ₂ O ₄ /NiCo ₂ S ₄ -0	6.53595	0.10338
NiCo ₂ O ₄ /NiCo ₂ S ₄ -10	5.23399	0.12680
NiCo ₂ O ₄ /NiCo ₂ S ₄ -30	5.54320	0.12196
NiS ₂ / NiCo ₂ S ₄	5.86631	0.11463

Sample	Binding energy and atomic percentage of Ni species (eV/%)	
Sumpre	Ni(+2)	Ni(+3)
NiCo ₂ O ₄	854.03/31.16%	855.72/68.84%
NiCo ₂ O ₄ /NiCo ₂ S ₄ -0	854.03/30.68%	855.78/69.32%
NiCo ₂ O ₄ /NiCo ₂ S ₄ -10	854.18/28.87%	855.95/71.13%
NiCo ₂ O ₄ /NiCo ₂ S ₄ -30	854.32/21.53%	856.06/78.47%
NiS ₂ / NiCo ₂ S ₄	854.45/24.71%	856.23/75.29%

Table S3. The binding energy of the fitted Ni species of the samples.

Table S4. The binding energy of the fitted Co species of the samples.

Sample –	Binding energy and atomic percentage of Co species (eV/%)	
	Co(+2)	Co(+3)
NiCo ₂ O ₄	781.23/50.29%	779.47/49.71%
NiCo ₂ O ₄ /NiCo ₂ S ₄ -0	781.50/52.58%	779.57/47.42%
NiCo ₂ O ₄ /NiCo ₂ S ₄ -10	781.69/53.67%	779.83/46.33%
NiCo ₂ O ₄ /NiCo ₂ S ₄ -30	781.87/50.48%	779.83/49.52%
NiS ₂ / NiCo ₂ S ₄	781.97/47.51%	779.83/52.49%

Samples	Stability	Ref
NiCo ₂ O ₄ /NiCo ₂ S ₄	88.1%(9000 cycles)	This work
P-NiCo ₂ S ₄	87.5%(5000 cycles)	1
NiCo ₂ S ₄ @NiCo ₂ O ₄	82% (1000 cycles)	2
NiCo ₂ S ₄ /rGO//AC	90.2% (10000 cycles)	3
NiCo _x O _y	77% (1500 cycles)	4
NiCo ₂ S ₄	87% (5000 cycles)	5
NiMn-G- LDH@NiCo ₂ S ₄	86.4% (10000 cycles)	6

Table S5. Comparison of cycle stability of the different samples.

References

- 1 J. Lin, Y. Wang, X. Zheng, H. Liang, H. Jia, J. Qi, J. Cao, J. Tu, W. Fei and J. Feng, *Dalton Trans*, 2018, **47**, 8771-8778.
- 2 A. Singh, S. K. Ojha, M. Singh and A. K. Ojha, *Electrochimica Acta*, 2020, **349**, 136349.
- 3 M. Dong, Z. Wang, G. Yan, J. Wang, H. Guo and X. Li, *J Alloy Compd*, 2020, **822**, 153645.
- 4 R. Ding, M. Zhang, Y. Yao and H. Gao, *J Colloid Interface Sci*, 2016, **467**, 140-147.
- 5 H. Zheng, H. Zhu, M. Zhang, M. Zhang, R. Liu, X. Song, J. Wu, C. Zhang, Q. Song and H. Cui, *Vacuum*, 2020, **182**, 109648.
- 6 S. Chen, C. Lu, L. Liu, M. Xu, J. Wang, Q. Deng, Z. Zeng and S. Deng, *Nanoscale*, 2020, **12**, 1852-1863.