ESI

Tin(IV) fluoride complexes with neutral phosphine coordination and comparisons with hard N- and O-donor ligands

Rhys P. King^a, Madeleine S. Woodward^a, Julian Grigg^b, Graeme McRobbie^b, William Levason^a and Gillian

Reid^a*

Compound	[SnF ₃ (PMe ₃) ₂ (OTf)]	[Sn(PMe ₃) ₂ (OTf) ₂]	Sn ₃ F ₅ (OTf)	[SnF₄(κ²-triphos)]
Formula	$C_7H_{18}F_6O_3P_2SSn$	$C_8H_{18}F_6O_6P_2S_2Sn$	CF ₈ O ₃ SSn ₃	$C_{41}H_{39}F_4P_3Sn$
М	476.90	568.97	600.14	819.32
Crystal system	Orthorhombic	Monoclinic	Monoclinic	Monoclinic
Space group (no.)	Pbca (61)	P2 ₁ /n (14)	P2 ₁ /n (14)	P2 ₁ /n (14)
a /Å	11.4007(2)	12.9043(3)	13.4971(4)	13.8624(2)
b/Å	11.84650(10)	10.9889(3)	7.6953(2)	12.9086(2)
c /Å	23.9749(3)	15.1867(6)	10.7894(30	20.5379(4)
α/°	90	90	90	90
β/°	90	110.338(3)	97.810(2)	98.7350(17)
γ /°	90	90	90	90
U /Å ³	3238.01(7)	2019.27(11)	1110.24(5)	3632.50(11)
Ζ	8	4	4	4
μ (Mo-K _a) /mm ⁻¹	1.967	1.704	6.983	0.886
F(000)	1872	1120	1072	1664
Total number refins	85205	15141	29342	59518
R _{int}	0.079	0.044	0.122	0.044
Unique reflns	5553	6008	3642	11707
No. of params, restraints	187, 0	232, 0	145, 0	443, 0
GOF	1.014	1.052	1.030	1.035
$R_1, wR_2 [I > 2\sigma(I)]^b$	0.0236, 0.0518	0.043, 0.098	0.036, 0.075	0.033, 0.072
R_1 , w R_2 (all data)	0.0305, 0.0546	0.061, 0.103	0.052, 0.080	0.048, 0.077

 Table S1 X-ray crystallographic data.^a

^a common data: T = 100 K; wavelength (Mo-K_α) = 0.71073 Å; θ(max) = 27.5°; ^b R₁ = Σ||F₀| - |F_c||/Σ|F₀|; wR₂ = [Σw(F₀² - F_c²)²/ΣwF₀⁴]^{1/2}.

Table S1 cont.

Compound	[SnF ₄ (pyNO) ₂]·CH ₂ Cl ₂	[SnF ₄ (py) ₂]	[SnF ₂ (OPPh ₃) ₄][OTf] ₂
Formula	$C_{22}H_{24}CI_4F_8N_4O_4Sn_2$	$C_{10}H_{10}F_4N_2Sn$	$C_{74}H_{60}F_8O_{10}P_4S_2Sn$
М	469.82	342.81	1567.91
Crystal system	Triclinic	Triclinic	Triclinic
Space group (no.)	P-1 (2)	P-1 (2)	P-1 (2)
a /Å	9.4615(3)	6.3696(4)	13.7031(3)
b/Å	11.2482(3)	7.2222(4)	15.6126(4)
c/Å	15.4968(5)	7.2263(3)	18.1412(4)
α/°	90.899(3)	117.933(5)	69.740(2)
β/°	103.213(3)	91.612(4)	70.468(2
γ /°	101.930(3)	109.045(5)	76.875(2)
U /Å ³	1567.47(9)	271.02(3)	3404.20(15)
Ζ	4	1	2
μ(Mo-K _α) /mm ⁻¹	2.019	2.387	0.613
F(000)	911.269	160	1596
Total number refins	20963	6755	80126
R _{int}	0.0769	0.043	0.0499
Unique reflns	7617	1396	17545
No. of params, restraints	397, 0	79, 0	892, 0
GOF	1.0361	1.182	1.020
$R_1, wR_2 [I > 2\sigma(I)]^b$	0.0552, 0.1560	0.067, 0.211	0.0469, 0.1160
R ₁ , wR ₂ (all data)	0.0675, 0.1635	0.067, 0.211	0.0663, 0.1301

Spectroscopic data

Figure S1.1-S1.5 [SnF₄(PⁱPr₃)₂]

```
Figure S2.1-S2.5 [SnF<sub>3</sub>(PMe<sub>3</sub>)<sub>2</sub>(OTf)]
```

```
Figure S3.1-S3.5 [SnF<sub>2</sub>(PMe<sub>3</sub>)<sub>2</sub>(OTf)<sub>2</sub>]
```

```
Figure S4.1-S4.5 [SnF(PMe<sub>3</sub>)<sub>2</sub>]OTf)<sub>3</sub>]
```

```
Figure S5.1-S5.5 [SnF<sub>3</sub>(P<sup>i</sup>Pr<sub>3</sub>)<sub>2</sub>[(OTf)
```

```
Figure S6.1-S6.4 [SnF<sub>2</sub>(P<sup>i</sup>Pr<sub>3</sub>)<sub>2</sub>(OTf)]
```

```
Figure S7.1-S7.5 [SnF<sub>4</sub>(triphos)]
```

```
Figure S8.1-S8.4 [SnF<sub>4</sub>(dmso))<sub>2</sub>]
```

```
Figure S9.1-S9.4 [SnF<sub>3</sub>(dmso)<sub>3</sub>][OTf]
```

```
Figure S10.1-S10.3 [SnF<sub>4</sub>(DMF)<sub>2</sub>]
```

```
Figure S11.1-S11.3 [SnF<sub>3</sub>(DMF)<sub>3</sub>][OTf]
```

```
Figure S12.1-S12.4 [SnF<sub>3</sub>(Py)<sub>3</sub>][OTf]
```

```
Figure S13.1-S13.4 [SnF<sub>4</sub>(PyNO)<sub>2</sub>]
```

```
Figure S14.1-S14.4 [SnF<sub>3</sub>(pyNO)<sub>3</sub>][OTf]
```

```
Figure S15.1-S15.5 [SnF<sub>3</sub>(OPPh<sub>3</sub>)<sub>3</sub>][OTf]
```

```
Figure S16.1-S16.5 [SnF<sub>2</sub>(OPPh<sub>3</sub>)<sub>4</sub>][OTf]<sub>2</sub>
```

```
Figure S17 The extended structure of [Sn(OTf)<sub>2</sub>(PMe<sub>3</sub>)<sub>2</sub>]
```

```
Figure S18 The asymmetric unit of Sn<sub>3</sub>F<sub>5</sub>(OTf)
```

Figure S1 [SnF₄(PⁱPr₃)₂]

Figure S1.1 ¹H NMR spectrum (CD₂Cl₂, 298 K) (CH₂Cl₂[%]):

Figure S1.2 $^{19}\text{F}\{^{1}\text{H}\}$ NMR spectrum (CD $_2\text{Cl}_2,$ 298 K):

Figure S1.3 ${}^{31}P{}^{1}H$ NMR spectrum (CH₂Cl₂, 298 K):

Figure S1.4 ¹¹⁹Sn NMR spectrum (CD₂Cl₂, 183 K):

Figure S1.5 IR spectrum (Nujol/cm⁻¹):

Figure S2. [SnF₃(PMe₃)₂(OTf)]

Figure S2.1 ¹H NMR spectrum (CD₂Cl₂, 298 K) (* = [HPMe₃]⁺ impurity, CH₂Cl₂[%]):

Figure S2.2.1 ¹⁹F{¹H} NMR spectrum (CD₂Cl₂, 298 K):

Figure S2.2.2 ${}^{19}F{}^{1}H$ NMR spectrum in CD₂Cl₂ (CD₂Cl₂, 183 K):

Figure S2.3.1 ³¹P{¹H} NMR spectrum (CH₂Cl₂, 298 K) (* = [HPMe₃]⁺ impurity)::

Figure S2.3.2 ${}^{31}P{}^{1}H$ NMR spectrum (CH₂Cl₂, 183 K) (* = [HPMe₃]⁺ impurity):

Figure S2.4 ¹¹⁹Sn NMR spectrum (CH₂Cl₂, 183 K):

Figure S2.5 IR spectrum (Nujol/cm⁻¹):

Figure S3 [SnF₂(PMe₃)₂(OTf)₂]

Figure S3.1 ¹H NMR spectrum (CD₂Cl₂, 298 K) (* [HPMe₃]⁺ impurity, CH₂Cl₂[%]):

Figure S3.2.1 $^{19}F{^{1}H}$ NMR spectrum (CD₂Cl₂, 298 K):

Figure S3.2.3 Expansion of multiplet at -142.7 ppm:

Figure S3.3.1 $^{31}P\{^{1}H\}$ NMR spectrum (CH₂Cl₂, 298 K):

Figure S3.3.2 ${}^{31}P{}^{1}H$ NMR spectrum (CH₂Cl₂, 183 K) (* [SnF(PMe₃)₂(OTf)₃] impurity. 5 [HPMe₃]⁺ impurity,

Figure S3.4 ¹¹⁹Sn NMR spectrum (CH₂Cl₂, 183 K):

Figure S3.5 IR spectrum (Nujol/cm⁻¹):

Figure S4 [SnF(PMe₃)₂(OTf)₃]

Figure S4.1.1 ¹H NMR spectrum *in situ* (CD₂Cl₂, 298 K) (* = $FSiMe_{3}$, CH₂Cl₂[%]):

Figure S4.1.2 ¹H NMR spectrum immediately on isolation (CD_2Cl_2 , 298 K) (*[FPMe₃]⁺, ^{\$}decomposition, $CH_2Cl_2^{\%}$):

Figure S4.2.1 ¹⁹F{¹H} NMR spectrum of isolated product (CD₂Cl₂, 298 K) (* = [PMe₃F]⁺ impurity):

Figure S4.2.2 Zoomed in picture of isolated product multiplet

Figure S4.3.1 $^{19}\text{F}\{^1\text{H}\}$ in situ: *FSiMe_3

Figure S4.3.2 Expansion of the multiplet at -132.9 ppm:

Figure S4.3.1 ³¹P{¹H} NMR spectrum (CH₂Cl₂, 298 K) ([£][HPMe₃]⁺):

Figure S4.4 $^{\rm 119} Sn$ NMR spectrum (CH_2Cl_2, 183 K):

Figure S4.5 IR spectrum (Nujol/cm⁻¹):

Figure S5 [SnF₃(PⁱPr₃)₂][OTf]

Figure S5.1 ¹H NMR spectrum CD_2Cl_2 , 298 K) ($CH_2Cl_2^{\%}$):

Figure S5.2.1 ¹⁹F{¹H} NMR spectrum (CD₂Cl₂, 298 K) (* = [SnF₄(ⁱPr₃P)₂] impurity; ^{\$} = [FPⁱPr₃]⁺ impurity):

Figure S5.2.2 ¹⁹F{¹H} NMR spectrum (CD₂Cl₂, 183 K):

Figure S5.3 ³¹P{¹H} NMR spectrum (CD₂Cl₂, 298 K) (* = [HPⁱPr₃]⁺ impurity; ^{\$} = [SnF₄(ⁱPr₃P)₂] impurity):

Figure S5.4 $^{\rm 119}Sn$ NMR spectrum (CD_2Cl_2, 183 K):

Figure S5.5 Simulated ¹¹⁹Sn spectrum

Figure S5.5 IR spectrum (Nujol/cm⁻¹):

Figure S6 [SnF₂(ⁱPr₃P)₂][OTf]₂

Figure S6.1.1 ¹H NMR spectrum (CD₂Cl₂, 298 K) (*in situ*):

Figure S6.1.2 ¹H NMR spectrum (CD₂Cl₂, 298 K) (isolated complex) (*[SnF₃(PⁱPr₃)₂(OTf)], CH₂Cl₂[%]):

Figure S6.2. $^{19}\text{F}\{^{1}\text{H}\}$ NMR spectrum (CD $_{2}\text{CI}_{2},$ 298 K):

Figure S6.3.1 ³¹P{¹H} NMR spectrum (*in situ*) (CH₂Cl₂, 298 K) (^{\$} [HⁱPr₃P]⁺, * [SnF₃(ⁱPr₃P)₂(OTf)]):

Figure S6.3.2 ³¹P{¹H} NMR spectrum (CH₂Cl₂, 298 K) (isolated complex) ($(H^{1}Pr_{3}P)^{+}$, * [SnF₄($Pr_{3}P)_{2}$]):

Figure S6.4 ¹¹⁹Sn NMR spectrum (CH₂Cl₂, 183 K) showing a mixture of mono- and bis-triflate complexes

Figure S6.5 IR spectrum (Nujol/cm⁻¹):

Figure S7 [SnF₄(triphos)]

Figure S7.1 ¹H NMR spectrum (CD₂Cl₂, 298 K) (CH₂Cl₂[%]):

Figure S7.2.1 ¹⁹F{¹H} NMR spectrum (CD₂Cl₂, 298 K):

Figure S7.2.2 Expansion of multiplet at -144.2 ppm:

Figure S7.2.3 Expansion of multiplet at -109.7 ppm:

Figure S7.3 ${}^{31}P{}^{1}H$ NMR spectrum (CH₂Cl₂, 298 K) (* = triphos):

Figure S7.4 ¹¹⁹Sn NMR spectrum (CH₂Cl₂, 183 K):

and the second states VW

Figure 8 [SnF₄(dmso))₂]

Figure S8.2 ¹⁹F{¹H} NMR spectrum (CD₃NO₂, 298 K):

-144 -146 -148 -150 -152 -154 -156 -158 -160 -162 -164 Chemical Shift (ppm)

Figure S8.3 ^{119}Sn NMR spectrum (CH_3NO_2, 253 K):

Figure S9 [SnF₃(dmso)₃][OTf]

Figure S9.1 ¹H NMR spectrum (CD₃NO₂, 298 K) (* MeNO₂):

Figure S9.2 ¹⁹F{¹H} NMR spectrum (CD₃NO₂, 298 K) (OTf resonance omitted):

Figure S9.3 ¹¹⁹Sn NMR spectrum (CD₃NO₂, 253 K):

Figure S9.4 IR spectrum (Nujol/cm⁻¹):

Figure S10.1 ¹H NMR spectrum (CD₃NO₂, 298 K) (* MeNO₂):

Figure S10.2 ¹⁹F{¹H} NMR spectrum (CD₃NO₂, 298 K) (OTf resonance omitted):

Figure S10.3 IR spectrum (Nujol/cm⁻¹):

Figure S11 [SnF₃(DMF)₃][OTf]

2000 2400

M MMM

Figure 12 [SnF₃(py)₃][OTf]

Figure S12.1 ¹H NMR spectrum (CD₃NO₂, 298 K):

Figure S12.2 ¹⁹F{¹H} NMR spectrum (CD₃NO₂, 298 K) (OTf resonance omitted):

Figure S12.3 IR spectrum (Nujol/cm⁻¹):

Figure S13 [SnF₄(pyNO)₂]

Figure S13.1 ¹H NMR spectrum (CD₃NO₂, 298 K):

56.55

Figure S14 [SnF₃(pyNO)₃][OTf]

Figure S14.1 ¹H NMR spectrum (CD₃NO₂, 298 K) (^{\$} CH₂Cl₂):

Figure S14.2 ¹⁹F{¹H} NMR spectrum (CD₃NO₂, 298 K) (OTf resonance omitted):

Figure S14.4 IR spectrum (Nujol/cm⁻¹):

Figure S15 [SnF₃(OPPh₃)₃][OTf]:

Figure S15.1 ¹H NMR spectrum (CD₂Cl₂, 298 K) (* CD₂Cl₂):

Figure S16 [SnF₂(OPPh₃)₄][OTf]₂

Figure S16.1 ¹H NMR spectrum (CD₃NO₂, 298 K) (^{\$} CH₂Cl₂, ^{*} CD₃NO₂):

Figure S16.2 ¹⁹F{¹H} NMR spectrum (CD₃NO₂, 298 K) (OTf resonance omitted):

-119 -120 -121 -122 -123 -124 -125 -126 Chemical Shift (ppm)

Figure S16.3 ³¹P{¹H} NMR spectrum (CH₃NO₂, 298 K):

Figure S16.4 IR spectrum (Nujol/cm⁻¹):

Figure S17 (a) View of a portion of the extended 1D structure of $[Sn(OTf)_2(PMe_3)_2]$ in the b-direction showing the Sn…OTf contacts (purple dashed lines); (b) the geometry around the tin centre with only the coordinated oxygen from the OTf groups shown.

Figure S18 The asymmetric unit of $[Sn_3F_5(OTf)]$ showing the atom labelling scheme. The ellipsoids are draws at the 50% probability level. Selected bond lengths (Å) and angles (°) are: Sn1–F1 = 2.055(2), Sn1–F2 = 2.143(3), Sn1–F3 = 2.148(3), Sn2–F1 = 2.385(2), Sn2–F3 = 2.165(2), Sn2–F4 = 2.175(3), Sn2–F5 = 2.268 (2), Sn3–F2 = 2.183(3), Sn3–F4 = 2.156(3), Sn3–F5 = 2.083(2).