Electronic supplementary information (ESI)

for

Complexity of imine and amine Schiff-base tin(II) complexes: drastic differences of amino and pyridyl side arms

Supajittra Yimthachote, Phongnarin Chumsaeng, and Khamphee Phomphrai*

Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC) 555 Payupnai, Wangchan, Rayong 21210, Thailand. Email: khamphee.p@vistec.ac.th

Figure S1 ¹H-NMR spectrum (C₆D₆, 600 MHz, 30°C) of complex 1a.

Figure S2 ¹³C-NMR spectrum (C_6D_6 , 151 MHz, 30°C) of complex 1a.

Figure S3 ¹H-NMR spectrum (C₆D₆, 600 MHz, 30° C) of complex 1b.

Figure S4 13 C-NMR spectrum (C₆D₆, 151 MHz, 30°C) of complex 1b.

Figure S5 ¹H-NMR spectrum (C_6D_6 , 600 MHz, 30°C) of complex 1b'.

Figure S6¹³C-NMR spectrum (C₆D₆, 151 MHz, 30°C) of complex 1b'.

Figure S7 ¹H-NMR spectrum (C₆D₆, 600 MHz, 30° C) of complex 2a.

Figure S8 ¹³C-NMR spectrum (C_6D_6 , 151 MHz, 30°C) of complex 2a.

Figure S9 ¹H-NMR spectrum (C_6D_6 , 600 MHz, 30°C) of complex **2b'**.

Figure S10 ¹³C-NMR spectrum (C_6D_6 , 151 MHz, 30°C) of complex 2b'.

Figure S11 ¹H-NMR spectrum (C_6D_6 , 600 MHz, 30°C) of complex 3a.

Figure S12 ¹³C-NMR spectrum (C₆D₆, 151 MHz, 30°C) of complex 3a.

Figure S13 ¹H-NMR spectrum (C_6D_6 , 600 MHz, 30°C) of complex 3b.

Figure S14 13 C-NMR spectrum (C₆D₆, 151 MHz, 30°C) of complex 3b.

Figure S15 ¹H-NMR spectrum (C_6D_6 , 600 MHz, 30°C) of complex 4a.

Figure S16 13 C-NMR spectrum (C₆D₆, 151 MHz, 30°C) of complex 4a.

Figure S17 ¹H-NMR spectrum (C_6D_6 , 600 MHz, 30°C) of complex 4b.

Figure S18 13 C-NMR spectrum (C₆D₆, 151 MHz, 30°C) of complex 4b.

Figure S19 The NMR-scale reaction (C_6D_6 , 600 MHz, 30°C) of (a) ligand HL containing N-CH₂Ph moiety, (b) 1:1 reaction of HL and Sn[N(SiMe₃)₂]₂ followed by solvent evaporation giving complex LSnN(SiMe₃)₂, and (c) 2:1 reaction of HL and Sn[N(SiMe₃)₂]₂ followed by solvent evaporation giving complex L₂Sn.

Figure S20 ¹H-NMR spectrum (600 MHz, CDCl₃, 30°C) of the resultant copolymer (Table 1, entry 1) obtained using SA:CHO:**4a** = 50:50:1, [SA]₀ = 1.0 M in toluene at 110 °C for 3 h.

Figure S21 ¹H-NMR spectrum (600 MHz, CDCl₃, 30°C) of the resultant copolymer (Table 1, entry 2) obtained using SA:CHO:**4b** = 50:50:1, $[SA]_0 = 1.0$ M in toluene at 110 °C for 3 h.

Figure S22 ¹H-NMR spectrum (600 MHz, CDCl₃, 30°C) of the resultant copolymer (Table 1, entry 3) obtained using SA:CHO:**4a** = 50:300:1, $[SA]_0 = 1.0$ M in toluene at 110 °C for 45 min.

Figure S23 ¹H-NMR spectrum (600 MHz, CDCl₃, 30°C) of the resultant copolymer (Table 1, entry 4) obtained using SA:CHO:**4a** = 50:460:1, neat CHO, at 110 °C for 30 min.

Figure S24 GPC profile of the resultant copolymer (Table 1, entry 1) obtained using SA:CHO:**4a** = 50:50:1, $[SA]_0 = 1.0$ M in toluene at 110 °C for 3 h.

Figure S25 GPC profile of the resultant copolymer (Table 1, entry 2) obtained using SA:CHO:**4b** = 50:50:1, [SA]₀ = 1.0 M in toluene at 110 °C for 3 h.

Figure S26 GPC profile of the resultant copolymer (Table 1, entry 3) obtained using SA:CHO:**4a** = 50:300:1, $[SA]_0 = 1.0$ M in toluene at 110 °C for 45 min.

Figure S27 GPC profile of the resultant copolymer (Table 1, entry 4) obtained using SA:CHO:4a = 50:460:1, neat CHO, at 110 °C for 30 min.

X-ray crystallographic data

Table S1 Crystals a	and structure refinement	data for complex	1a-4a and 1b-4b .

Compound	1a	1b	1b'	2a	2b'	3a	3b	4a	4b
CCDC number	2102912	2102913	2102918	2102914	2102915	2102916	2102917	2102919	2102920
Empirical formula	$C_{25}H_{49}$	$C_{27}H_{45}$	C42H52	C38H62	$C_{42}H_{54}$	C38H64	$C_{42}H_{56}$	$C_{38}H_{66}$	$C_{42}H_{58}$
	N ₃ OSi ₂ Sn	N ₃ OSi ₂ Sn	$N_4O_2Sn_2$	N ₄ O ₂ Sn	N ₄ O ₂ Sn	$N_4O_2Sn_2$	$N_4O_2Sn_2$	N ₄ O ₂ Sn	N ₄ O ₂ Sn
Formula weight	582.54	602.53	882.25	725.60	765.58	846.35	886.36	729.63	769.61
Crystal system	Orthorhombic	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Triclinic	Monoclinic	Monoclinic	Monoclinic
Space group	$P2_{1}2_{1}2_{1}$	$P2_1/n$	$P2_{1}/c$	C2/c	$P2_{1}/c$	Pi	$P2_1/n$	$P2_{1}/c$	C2/c
<i>a</i> / Å	8.489(1)	8.332 (1)	15.635 (2)	25.758 (2)	15.197 (1)	9.063 (1)	9.571 (1)	16.287 (1)	36.251 (3)
b / Å	16.000(1)	20.111 (1)	15.894 (2)	13.509 (1)	15.667 (1)	9.064 (1)	11.105(1)	17.961 (1)	9.702 (8)
<i>c</i> / Å	22.099 (1)	18.170 (2)	18.278 (2)	24.518 (2)	19.230(1)	13.261 (1)	21.902 (2)	14.025 (1)	25.772 (2)
α / °	90	90	90	90	90	71.073 (3)	90	90	90
β / °	90	93.329 (4)	97.412 (4)	110.166 (3)	91.923 (3)	75.736 (3)	93.592 (3)	103.863 (2)	119.231 (3)
γ/°	90	90	90	90	90	80.550 (3)	90	90	90
Cell volume, V / Å ³	3001.5 (2)	3039.5 (6)	4504.2 (9)	8008.4 (1)	4575.8 (6)	994.42 (2)	2323.4 (4)	3983.3 (4)	7910.1
No. of formula units/cell, Z	4	4	4	8	4	2	2	4	8
ρ _{calc} ./Mg m ⁻³	1.289	1.317	1.301	1.204	1.111	1.413	1.510	1.217	1.292
F(000)	1224	1256	1792	3072	1600	436	1072	1552	3232
Absorption coefficient, μ / mm^{-1}	0.951	0.942	1.144	0.672	0.592	1.291	1.344	0.676	0.685
<i>T /</i> K	100	100	100	100	100	100	100	100	100
Crystal solar shape	Yellow, Needle	Yellow-green,	Yellow,	Yellow,	Yellow,	Colorless,	Yellow,	Colorless,	Colorless,
Crystal color, shape		Rectangular	Rectangular	Rectangular	Block	Rectangular	Rectangular	Rectangular	Prism
Crustal size / mm	0.24 x 0.05 x	0.38 x 0.31 x	0.13 x 0.10 x	0.22 x 0.20 x	0.46 x 0.35 x	0.91 x 0.49 x	0.11 x 0.10 x	0.22 x 0.08 x	0.72 x 0.20 x
Crystal size / IIIII	0.05	0.25	0.04	0.08	0.29	0.40	0.05	0.08	0.05
Total no. of reflections measured (not including absences)	51921	139438	115240	180579	70484	34131	85743	133290	68140
No. of unique reflections, and <i>R</i> _{int} for equivalents	5494, 0.0692	7251, 0.0245	8230, 0.1446	11726, 0.0557	9007, 0.0349	3756, 0.0304	6805, 0.0532	7834, 0.0403	8402, 0.0519
No. of 'observed' reflections $[I > 2\sigma(I)]$	5189	6897	6368	9872	7987	3661	5803	7129	6328
Data/restraints/ parameters	5494/0/303	7251/58/347	8230/0/463	11726/0/428	9007/0/455	3756/0/216	6805/2/278	7834/0/422	8402/0/463
Goodness-of-fit on F^2 , S	1.047	1.110	1.053	1.028	1.058	1.130	1.056	1.037	1.031
R indices	$R_1 = 0.0202,$	$R_1 = 0.0204,$	$R_1 = 0.0323,$	$R_1 = 0.0272,$	$R_1 = 0.0225$,	$R_1 = 0.0152,$	$R_1 = 0.0271$,	$R_1 = 0.0197,$	$R_1 = 0.0272,$
('observed' data)	$wR_2 = 0.0405$	$wR_2 = 0.0489$	$wR_2 = 0.0697$	$wR_2 = 0.0559$	$wR_2 = 0.0542$	$wR_2 = 0.0396$	$wR_2 = 0.0557$	$wR_2 = 0.0482$	$wR_2 = 0.0582$
R indices (all data)	$R_1 = 0.0236,$	$R_1 = 0.0220,$	$R_1 = 0.0504,$	$R_1 = 0.0393,$	$R_1 = 0.0273,$	$R_1 = 0.0159,$	$R_1 = 0.0379,$	$R_1 = 0.0235,$	$R_1 = 0.0473,$
	$wR_2 = 0.0413$	$wR_2 = 0.0505$	$wR_2 = 0.0739$	$wR_2 = 0.0597$	$wR_2 = 0.0560$	$wR_2 = 0.0398$	$wR_2 = 0.0588$	$wR_2 = 0.0498$	$wR_2 = 0.0656$
Largest diff. peak and hole / eÅ ⁻³	0.40 and -0.40	0.75 and -0.68	0.99 and -0.54	0.43 and -0.36	0.35 and -0.26	0.34 and -0.38	0.73 and -0.56	0.37 and -0.26	0.41 and -0.62