Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Five Shades of Green: Substituent Influence on the (Spectro-) Electrochemical Properties of Diferrocenylphenyl Methylium Dyes

Larissa A. Casper, ^a Viktoria Ebel^a, Michael Linseis^a, and Rainer F. Winter^{*a}

Table of Contents

Supporting Information
NMR-Spectroscopy
Mass Spectrometry 17
Hammett Plots: Part I
T-dependent NMR spectroscopy21
XRD- Crystal Data
Crystal data and structure refinement for 1-OH 24
Crystal data and structure refinement for 2-OH 27
Crystal data and structure refinement for 3-OH
Crystal data and structure refinement for 4-OH 33
Crystal data and structure refinement for 5-OH
Crystal data and structure refinement for 1^{+} 40
Crystal data and structure refinement for 4 ⁺ 44
Crystal data and structure refinement for 5 ⁺ 47
Cyclic Voltammetry
Hammett Plots: Part II
UV/Vis/NIR Spectro(electro)chemical Data and TD-DFT calculations
T-dependent and quantitative EPR Spectroscopy62
<i>T</i> -dependent EPR Spectroscopy63
Spin counting quantification method63
References

Figure S1: Top: Picture taken of complex cations 1^+-5^+ under ambient conditions, demonstrating their stability; Bottom: Comparison of the UV/Vis/NIR spectra of the five cations.

NMR-Spectroscopy

Figure S3: ¹³C-NMR spectrum of **1-OH** (CDCl₃, 400 MHz).

Figure S5: ¹³C-NMR spectrum of **2-OH** (CDCl₃, 400 MHz).

Figure S7: ¹³C-NMR spectrum of **3-OH** (CD₂Cl₂, 400 MHz).

Figure S9: ¹⁹F-NMR spectrum of **4-OH** (CD₂Cl₂, 400 MHz).

Figure S11: ¹H-NMR spectrum of **5-OH** (CD₂Cl₂, 400 MHz).

-75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -185 -190 δ [ppm]

Figure S12: ¹⁹F-NMR spectrum of **5-OH** (CD₂Cl₂, 400 MHz).

Figure S13: ¹³C-NMR spectrum of **5-OH** (CD₂Cl₂, 400 MHz).

Figure S15: ¹³C-NMR spectrum of 1^+ BAr^F₂₄ (CD₂Cl₂, 400 MHz).

Figure S17: ¹H-NMR spectrum of $2^{+}BAr^{F}_{24}$ (CD₂Cl₂, 400 MHz).

20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 δ[ppm]

Figure S18: ¹³C-NMR spectrum of 2^+ BAr^F₂₄⁻ (CD₂Cl₂, 400 MHz).

Figure S19: ¹⁹F-NMR spectrum of $2^+ BAr^{F}_{24}$ (CD₂Cl₂, 400 MHz).

Figure S20: ¹H-NMR spectrum of $\mathbf{3}^{+}\mathbf{BAr^{F}_{24}}^{-}$ (CD₂Cl₂, 400 MHz).

— -62.81

Figure S21: ¹⁹F-NMR spectrum of $3^+ BAr^{F_{24}}$ (CD₂Cl₂, 400 MHz).

Figure S23: ¹H-NMR spectrum of 4^+ **BAr**^F₂₄⁻ (CD₂Cl₂, 400 MHz).

180 175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 δ [ppm]

Figure S24: ¹³C-NMR spectrum of **4**⁺ **BAr**^F₂₄⁻ (CD₂Cl₂, 400 MHz).

Figure S25: ¹⁹F-NMR spectrum of 4^+ BAr^F₂₄⁻ (CD₂Cl₂, 400 MHz).

Figure S27: ¹³C-NMR spectrum of $5^+ BAr^{F_{24}}$ (CD₂Cl₂, 400 MHz).

Figure S28: ¹⁹F-NMR spectrum of $\mathbf{5}^{+} \mathbf{BAr}^{F}_{\mathbf{24}^{-}}$ (CD₂Cl₂, 400 MHz).

Mass Spectrometry

Figure S29: ESI-mass spectrum of 1^+ (experimental on the top, simulation at the bottom).

Figure S30: ESI-mass spectrum of 2^+ (experimental on the top, simulation at the bottom).

Figure S31: ESI-mass spectrum of 3^+ (experimental on the top, simulation at the bottom).

Figure S32: ESI-mass spectrum of 4^+ (experimental on the top, simulation at the bottom).

Figure S33: ESI-mass spectrum of 5^+ (experimental on the top, simulation at the bottom).

Hammett Plots: Part I

Figure S34: Hammett plot for the chemical shifts of the resonance signal of the methylium carbon atom C5; σ_p (C₆F₁₃) is here approximated by the pink lines to +0.26 [±0.06].

6.1 6.0 5.9 5.8 5.7 5.6 5.5 5.4 5.3 5.2 5.1 5.0 4.9 4.8 4.7 4.6 4.5 4.4 4.3 4.2 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2. δ [ppm]

Figure S35: ¹H-NMR spectrum of $2^+ BAr^{F_{24}}$ between 3 and 6 ppm at different temperatures between 280 K and 330 K (1,2-C₂D₄Cl₂, 600 MHz).

Figure S36: ¹³C-NMR spectrum of $2^+ BAr^{F_{24}}$ at 300 K and 330 K in spectral range of the ferrocenyl C atoms (1,2-C₂D₄Cl₂, 600 MHz and CD₂Cl₂, 400 MHz).

.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.1 δ [ppm]

Figure S37: ¹H-NMR spectrum of $2^+ BAr^{F}_{24}$ at different temperatures between 280 K and 330 K with zoom into the ferrocenyl region at the top (1,2-C₂D₄Cl₂, 600 MHz).

XRD- Crystal Data

	1-OH	2-OH	3-OH	4-OH	5-OH
Crystal System,	triclinic,	triclinic,	monoclinic,	orthorhombic,	orthorhombic,
Space Group	$P\overline{1}$	$P\overline{1}$	P21/c	Fdd2	Fdd2
Angle (CpFe1-CpFe1)	3.34°	2.41°	3.91°	4.00	4.59°
Angle (CpFe2-CpFe2)	4.47°	4.56°	3.52°	2.35	2.22°
Angle	111.05(13)°	109.99(13)°	109.76(2)°	109.40(2)°	109.35(2)°
(CpFe1Cp-CpFe2Cp)					
Angle	108.20(14)°	109.03(13)°	109.85(18)°	108.87(2)°	109.80(2)°
(CpFe1Cp-Ph)					
Angle	110.17(14)°	109.48(13)°	109.33(2)°	110.87(2)°	110.04(2)°
(CpFe2Cp-Ph)					
d(C-OH) ^[a]	1.442(2)	1.437(2)	1.436(3)	1.433(3)	1.436(4)
d(C-Ph) ^[a]	1.538(3)	1.541(2)	1.532(3)	1.522(4)	1.532(4)
d(C-CpFe1) ^[a]	1.517(2)	1.517(2)	1.512(3)	1.520(4)	1.514(4)
d(C-CpFe2) ^[a]	1.512(2)	1.517(2)	1.520(4)	1.509(4)	1.524(4)
d _{top} Cp-Fe1 ^[a]	1.646	1.648	1.650	1.658	1.649
d _{bottom} Cp-Fe1 ^[a]	1.649	1.649	1.655	1.659	1.653
d _{top} Cp-Fe2 ^[a]	1.647	1.650	1.650	1.648	1.646
d _{bottom} Cp-Fe2 ^[a]	1.653	1.655	1.651	1.657	1.652
Fe1	-10.09°, -9.71°,	-5.79°, -5.87°,	-5.49°, -5.35°,	-1.15°, -1.12°,	-10.98, -11.04°,
	-9.71°, -9.92°,	-5.99°, -6.23°,	-5.37°, -5.44°,	-0.85°, -0.87°,	-10.64°, -10.93°,
	-9.00°	-5.72°	-5.07°	-0.11	-10.29°
Fe2	-13.28°, -12.73°,	-8.59°, -8.82°,	-6.04°, -6.12°,	-23.73°, -23.73°,	-21.79, -21.70,
	-13.42°, -13.18°,	-8.86°, -8.90°,	-6.14°, -6.11°,	-23.73°, -23.72°,	-21.65, -21.96,
	-11.61°	-8.24°	-5.67°	-23.25°	-20.37°

Table S1: Comparison of the crystal data of carbinols **1-OH** to **5-OH**.

[a] Distances d in Å.

Crystal data and structure refinement for **1-OH**.

Figure S38: Perspective view of one of the independent molecules in the unit cell of complex **1-OH**. The ellipsoids are displayed at a 50% probability level.

Table S2: Structure solution and refinement data for **1-OH**.

Empirical formula	$C_{28}H_{26}O_2Fe_2$			
Formula weight	506.19			
Temperature/K	100.15			
Crystal system	triclinic			
Space group	PĪ			
a/Å	9.2870(9)			
b/Å	10.1320(11)			
c/Å	12.9067(16)			
α/°	112.121(9)			
β/°	96.839(9)			
γ/°	101.771(8)			
Volume/Å ³	1075.4(2)			
Z	2			
$\rho_{calc}g/cm^3$	1.563			
µ/mm⁻¹	1.373			
F(000)	524.0			
Crystal size/mm ³	0.5 × 0.277 × 0.08			
Radiation	ΜοΚα (λ = 0.71073)			
2O range for data collection/° 4.418 to 53.47				
Index ranges	$-11 \leq h \leq 11, -12 \leq k \leq 12, -16 \leq l \leq 16$			
Reflections collected	15773			
Independent reflections	4548 [$R_{int} = 0.0824$, $R_{sigma} = 0.0497$]			
Data/restraints/parameters	4548/0/293			
Goodness-of-fit on F ²	1.038			
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0317$, $wR_2 = 0.0782$			
Final R indexes [all data]	$R_1 = 0.0342$, $wR_2 = 0.0795$			

Figure S39: Perspective view of hydrogen bonded dimers of complex **1-OH**. The ellipsoids are displayed at a 50% probability level.

Crystal data and structure refinement for **2-OH**.

Figure S40: Perspective view of one of the independent molecules in the unit cell of complex **2-OH**. The ellipsoids are displayed at a 50% probability level.

Table S3: Structure solution and refinement data for **2-OH**.

Empirical formula	$C_{28}H_{26}Fe_2O$
Formula weight	490.19
Temperature/K	100(2)
Crystal system	triclinic
Space group	$P\overline{1}$
a/Å	8.992(3)
b/Å	10.149(3)
c/Å	12.791(4)
α/°	77.41(2)
β/°	69.79(2)
γ/°	86.91(2)
Volume/Å ³	1068.8(6)
Z	2
$\rho_{calc}g/cm^3$	1.523
µ/mm⁻¹	1.376
F(000)	508.0
Crystal size/mm ³	$0.3 \times 0.2 \times 0.1$
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/	4.786 to 53.698
Index ranges	$-11 \leq h \leq 11, -12 \leq k \leq 12, -16 \leq l \leq 16$
Reflections collected	12543
Independent reflections	4508 [$R_{int} = 0.0184$, $R_{sigma} = 0.0150$]
Data/restraints/parameters	4508/0/282
Goodness-of-fit on F ²	1.029
Final R indexes [I>=2σ (I)]	$R_1 = 0.0256$, $wR_2 = 0.0655$
Final R indexes [all data]	$R_1 = 0.0291$, $wR_2 = 0.0678$
Largest diff. peak/hole / e Å $^{\text{-}3}$	0.35/-0.44

Figure S41: Perspective view of hydrogen bonded dimers of complex **2-OH**. The ellipsoids are displayed at a 50% probability level.

Crystal data and structure refinement for **3-OH**.

Figure S42: Perspective view of one of the independent molecules in the unit cell of complex **3-OH**. The ellipsoids are displayed at a 50% probability level.

Table S4: Structure solution and refinement data for **3-OH**.

Empirical formula	$C_{27}H_{23}BrFe_2O$
Formula weight	555.06
Temperature/K	100(2)
Crystal system	monoclinic
Space group	P21/c
a/Å	10.2087(3)
b/Å	22.3002(8)
c/Å	9.2773(2)
α/°	90
β/°	92.140(2)
γ/°	90
Volume/Å ³	2110.56(11)
Z	4
$\rho_{calc}g/cm^3$	1.747
µ/mm⁻¹	3.286
F(000)	1120.0
Crystal size/mm ³	$0.3 \times 0.2 \times 0.1$
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/°	3.652 to 53.998
Index ranges	$-13 \leq h \leq 12, -28 \leq k \leq 28, -11 \leq l \leq 9$
Reflections collected	11459
Independent reflections	4585 [R_{int} = 0.0240, R_{sigma} = 0.0210]
Data/restraints/parameters	4585/0/282
Goodness-of-fit on F ²	1.075
Final R indexes [I>=2σ (I)]	$R_1 = 0.0315$, $wR_2 = 0.0775$
Final R indexes [all data]	$R_1 = 0.0375$, $wR_2 = 0.0831$
Largest diff. peak/hole / e Å $^{\text{-}3}$	0.55/-0.84

Figure S43: Perspective view of hydrogen bonded dimers of complex **3-OH**. The ellipsoids are displayed at a 50% probability level.

Crystal data and structure refinement for **4-OH**.

Figure S44: Perspective view of one of the independent molecules in the unit cell of complex **4-OH**. The ellipsoids are displayed at a 50% probability level.

Figure S45: Perspective view of two molecules of complex **4-OH** lacking true hydrogen bonds. The ellipsoids are displayed at a 50% probability level.

Figure S46: Perspective view of three molecules of complex **4-OH** with single C-H^{...}F contacts of 2.439 Å interconnecting the individual molecules. The ellipsoids are displayed at a 50% probability level.

Table S5: Structure solution and refinement data for **4-OH**.

Empirical formula	$C_{29}H_{22}F_{6}Fe_{2}O$
Formula weight	612.16
Temperature/K	100
Crystal system	orthorhombic
Space group	Fdd2
a/Å	15.9862(5)
b/Å	40.2342(8)
c/Å	14.6279(3)
α/°	90
β/°	90
γ/°	90
Volume/Å ³	9408.5(4)
Z	16
ρ _{calc} g/cm ³	1.729
µ/mm⁻¹	1.304
F(000)	4960.0
Crystal size/mm ³	0.6 × 0.467 × 0.2
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/°	4.844 to 55.152
Index ranges	$-20 \leq h \leq 20, -51 \leq k \leq 52, -18 \leq l \leq 18$
Reflections collected	9610
Independent reflections	5389 [$R_{int} = 0.0226$, $R_{sigma} = 0.0276$]
Data/restraints/parameters	5389/1/346
Goodness-of-fit on F ²	1.024
Final R indexes [I>=2σ (I)]	$R_1 = 0.0238$, $wR_2 = 0.0577$
Final R indexes [all data]	$R_1 = 0.0264$, $wR_2 = 0.0589$
Largest diff. peak/hole / e Å $^{\text{-}3}$	0.27/-0.37
Flack parameter	0.000

Crystal data and structure refinement for **5-OH**.

Figure S47: Perspective view of one of the independent molecules in the unit cell of complex **5-OH**. The ellipsoids are displayed at a 50% probability level.

Figure S48: Perspective view of two molecules of complex **5-OH**. The ellipsoids are displayed at a 50% probability level.

Figure S49: Perspective view of molecule chains in the crystal of **5-OH**. The ellipsoids are displayed at a 50% probability level.

Table S6: Structure solution and refinement data for 5-OH	Table S6: Structure	solution a	and refinem	ent data	for 5-OH
--	---------------------	------------	-------------	----------	----------

Empirical formula	$C_{29}H_{22}F_6Fe_2O$
Formula weight	612.16
Temperature/K	100
Crystal system	orthorhombic
Space group	Fdd2
a/Å	15.9862(5)
b/Å	40.2342(8)
c/Å	14.6279(3)
α/°	90
β/°	90
γ/°	90
Volume/ų	9408.5(4)
Z	16
$\rho_{calc}g/cm^3$	1.729
µ/mm⁻¹	1.304
F(000)	4960.0
Crystal size/mm ³	0.6 × 0.467 × 0.2
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/	4.844 to 55.152
Index ranges	$-20 \le h \le 20, -51 \le k \le 52, -18 \le l \le 18$
Reflections collected	9610
Independent reflections	5389 [R_{int} = 0.0226, R_{sigma} = 0.0276]
Data/restraints/parameters	5389/1/346
Goodness-of-fit on F ²	1.024
Final R indexes [I>=2σ (I)]	$R_1 = 0.0238$, $wR_2 = 0.0577$
Final R indexes [all data]	R ₁ = 0.0264, wR ₂ = 0.0589
Largest diff. peak/hole / e Å $^{\text{-}3}$	0.27/-0.37
Flack parameter	0.000

	1+	4 ⁺	5⁺
Crystal System,	triclinic,	monoclinic,	triclinic,
Space Group	$P\overline{1}$	P21/n	$P\overline{1}$
Angle (CpFe1-CpFe1)	5.28°	6.36°	8.51
Angle (CpFe2-CpFe2)	5.49°	6.77°	5.62
Angle	125.3(3)°	126.5(10)°	123.6(8)°
(CpFe1Cp-CpFe2Cp)			
Angle	116.6(3)°	114.7(10)°	117.6(8)°
(CpFe1Cp-Ph)			
Angle	118.1(3)°	118.8(10)°	118.7(8)°
(CpFe2Cp-Ph)			
d(C-Ph)	1.477(5)	1.505(15)	1.488(12)
d(C-CpFe1)	1.435(4)	1.415(15)	1.437(13)
d(C-CpFe2)	1.426(6)	1.422(16)	1.397(13)
Fe1 (HCCH torsion angles of ferrocene) [°]	-1.71,	-25.57,	-3.01,
	-1.59,	-20.75,	-1.73,
	-1.95,	-21.96,	-0.11,
	-1.38,	-23.28,	-2.39,
	-0.74	-23.89	-0.97
	ø-1.474	ø-23.09	ø-1.642
Fe2 (HCCH torsion angles of ferrocene) [°]	-7.38,	-5.78,	-21.73,
	-5.18,	-8.07,	-18.42
	-6.01,	-6.96,	-20.66,
	-4.95,	-6.03,	-19.04,
	-3.74	-5.90	-16.39
	ø-5.452	Ø-6.548	ø-19.248
Ph: Cipso-Cortho	1.394(5)/	1.388(15)/	1.371(13)/
	1.400(6)	1.390(16)	1.393(13)
	Ø1.397(6)	Ø1.389(16)	Ø1.382(13)
Ph: C _{meta} -C _{para}	1.382(7)/	1.335(15)/	1.375(16)/
	1.384(6)	1.36/(16)	1.391(15)
	Ø1.383(7)	Ø1.351(16)	Ø1.383(16)
Ph: Cortho-Cmeta	1.374(6)/	1.367(16)/	1.398(14)/
	1.380(0)	1.413(10)	1.410(13)
Dihadral angle C2 C1 C22 C27	46.25°	45 50°	5755°
Dihedral angle C12-C1-C22-C27	-40.25	-45.50 -46.87°	-57.55
Potation out of plano (p(Eo1) to Phonyl	-47.40 66.72°	-40.87 61.20°	-00.38 66 72°
Rotation out of plane Cp(Fe1) to Phenyl	60.75	61.04°	65.12°
Rotation out of plane Cp(Fe2) to Filenyi	10.33	20.00°	25.920
d(C1_inso_C_atoms(Cn))	10.70	1 / 80/15)	1 504(14)
a(cr-ipso-c-atoms(cp))	1 <u>4</u> 37(5)	1.405(15), 1.455(15)	1 <i>AA</i> 7(12)
	1 442(6)	1 458(16)	1 432(16)
	1 451(6)	1 456(16)	1 482(16)
Angle $C_{Co-contr} = C_{inco} C_{} C_{+}^{+} (F_{0} + 1/F_{0})$	172 12/	173 73/	167 16/
TIBLE CCP, centr. Clpso, FC (I CI/I CZ)	166 20	168 20	168 30
d(Cnarra-Ee1Cnarra)	17/ 10	172.80	173.24
d(Cnuck-Fe2Cnuck)	174.13	172.03	172 /0
	1/4.31	1/5.40	1/3.49

Table S7: Comparison of the crystal data of the three cationic complexes 1⁺, 4⁺ and 5⁺.

[a] Distances d in Å.

Crystal data and structure refinement for 1⁺.

Figure S50: Perspective view of one of the independent molecules (cations and anions) in the unit cell of complex **1**⁺. The ellipsoids are displayed at a 50% probability level.

|--|

Empirical formula	$C_{76}H_{46}B_2F_{36}Fe_2O_3$
Formula weight	1824.45
Temperature/K	100.0
Crystal system	triclinic
Space group	$P\overline{1}$
a/Å	12.8380(4)
b/Å	15.1737(5)
c/Å	23.1393(8)
α/°	95.572(3)
β/°	99.689(3)
γ/°	101.636(3)
Volume/ų	4311.7(3)
Z	2
$\rho_{calc}g/cm^3$	1.405
µ/mm⁻¹	0.457
F(000)	1824.0
Crystal size/mm ³	$0.15 \times 0.123 \times 0.1$
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/°	4.054 to 53.7
Index ranges	$-16 \leq h \leq 15,-19 \leq k \leq 19,-29 \leq l \leq 29$
Reflections collected	41329
Independent reflections	18527 [$R_{int} = 0.0452$, $R_{sigma} = 0.0619$]
Data/restraints/parameters	18527/212/1285
Goodness-of-fit on F ²	1.026
Final R indexes [I>=2σ (I)]	$R_1 = 0.0619$, $wR_2 = 0.1592$
Final R indexes [all data]	$R_1 = 0.1164$, $wR_2 = 0.1883$
Largest diff. peak/hole / e Å $^{\text{-}3}$	0.61/-0.54

Figure S51: Perspective view of one of the hydrogen-bonded dimeric anions in complex 1^+ . The ellipsoids are displayed at a 50% probability level.

Figure S52: Perspective view of multiple cations and anions from complex 1⁺.

Figure S53: Perspective view of the hydrogen bonding patterns within the molecules in complex 1⁺.

Figure S54: Perspective view along the a and c axis of the unit cell of complex 1^+ .

Crystal data and structure refinement for 4⁺.

Figure S55: Perspective view of one of the independent molecules (cations and anions) in the unit cell of complex **4**⁺. The ellipsoids are displayed at a 50% probability level.

Table	S9:	Structure	solution	and	refinement	data	for 4	I ⁺ .
i ubic	55.	Structure	20101011	ana	rennement	autu	101 -	•••

Empirical formula	$C_{61}H_{33}BF_{30}Fe_2$
Formula weight	1458.38
Temperature/K	100
Crystal system	monoclinic
Space group	P2 ₁ /n
a/Å	13.0996(5)
b/Å	20.2030(7)
c/Å	22.6739(9)
α/°	90
β/°	92.688(3)
γ/°	90
Volume/Å ³	5994.1(4)
Z	4
$\rho_{calc}g/cm^3$	1.616
µ/mm⁻¹	5.104
F(000)	2904.0
Crystal size/mm ³	$0.2 \times 0.1 \times 0.01$
Radiation	Cu Kα (λ = 1.54186)
20 range for data collection/°	5.862 to 135.268
Index ranges	$-15 \leq h \leq 15,-23 \leq k \leq 22,-25 \leq l \leq 25$
Reflections collected	32021
Independent reflections	10473 [$R_{int} = 0.0804$, $R_{sigma} = 0.0840$]
Data/restraints/parameters	10473/39/895
Goodness-of-fit on F ²	1.475
Final R indexes [I>=2σ (I)]	$R_1 = 0.1348$, $wR_2 = 0.3436$
Final R indexes [all data]	$R_1 = 0.2048$, $wR_2 = 0.4318$
Largest diff. peak/hole / e Å $^{\text{-}3}$	1.72/-0.74

Figure S56: Perspective view on molecule (anion and cation) order within the molecules of complex 4⁺.

Figure S57: Side-on view on ferrocenes (left) and long distance bonding interaction between the anions and the centrally depicted cation (right) within the molecules of complex 4^+ .

Crystal data and structure refinement for 5⁺.

Figure S58: Perspective view of one of the independent molecules (cations and anions) in the unit cell of complex **5**⁺. The ellipsoids are displayed at a 50% probability level.

This crystal unfortunately did not provide data of sufficient precision for in-depth discussion of the bond lengths (see Table S10).

Table S10: Structure solution and refinement data for 5⁺.

Empirical formula	$C_{130}H_{68}B_2F_{74}Fe_4$			
Formula weight	3280.86			
Temperature/K	100.0			
Crystal system	triclinic			
Space group	P-1			
a/Å	13.5975(8)			
b/Å	14.2300(10)			
c/Å	19.8660(15)			
α/°	78.080(6)			
β/°	85.474(6)			
γ/°	66.115(5)			
Volume/Å ³	3438.9(4)			
Z	1			
$\rho_{calc}g/cm^3$	1.584			
µ/mm⁻¹	0.562			
F(000)	1628.0			
Crystal size/mm ³	$0.2 \times 0.133 \times 0.1$			
Radiation	ΜοΚα (λ = 0.71073)			
20 range for data collection/° 4.756 to 55.486				
Index ranges	$-16 \leq h \leq 17, -18 \leq k \leq 18, -25 \leq l \leq 25$			
Reflections collected	32324			
Independent reflections	15784 [R _{int} = 0.0944, R _{sigma} = 0.1139]			
Data/restraints/parameters	15784/331/1113			
Goodness-of-fit on F ²	1.102			
Final R indexes [I>=2σ (I)]	$R_1 = 0.1202$, $wR_2 = 0.3318$			
Final R indexes [all data]	$R_1 = 0.2232$, $wR_2 = 0.3944$			
Largest diff. peak/hole / e Å $^{\text{-}3}$	1.58/-0.67			

Figure S59: Perspective view on the perfluorinated chain interactions in crystalline 5^+ BAR^F₂₄.

Figure S60: Different-angle perspective view on the perfluorinated chain interactions from complex 5⁺.

Cyclic Voltammetry

Figure S61: Cyclic voltammograms of the carbinol precursors **1-OH** – **5-OH** at $v = 100 \text{ mVs}^{-1}$ with y-axis peak current scales in 0.1 M CH₂Cl₂/ NBu₄⁺ [BArF₂₄]⁻.

Figure S62: Cyclic voltammograms of the carbinol precursors **1-OH** – **5-OH** at $v = 100 \text{ mVs}^{-1}$ with y-axis peak current scales in 0.1 M CH₂Cl₂/ NBu₄⁺ [PF₆]⁻.

Figure S63: Cyclic voltammograms of the carbinol precursors **1-OH** (top) to **5-OH** (bottom) at $v = 100 \text{ mVs}^{-1}$ in 0.1 M CH₂Cl₂/ NBu₄⁺ [PF₆]⁻ (blue line) and in 0.1 M CH₂Cl₂/ NBu₄⁺ [BArF₂₄]⁻ (black dotted line).

Figure S64: Cyclic voltammograms of the ketone Fc_2CO at $v = 100 \text{ mVs}^{-1}$ in 0.1 M CH₂Cl₂/NBu₄⁺ [PF₆]⁻ (top) and CH₂Cl₂ / NBu₄⁺ [BArF₂₄]⁻ (bottom).

Table S11: Additional electrochemical and DFT-computed data for cationic ferrocenylmethylium complexes in $CH_2Cl_2 / NBu_4^+ [BArF_{24}]^-$.

X ⁺ Δ <i>E</i> _{1/2} ^[a]		$\Delta_{\text{HOMO-LUMO}}{}^{[b]}$		
1	1575	3.104		
2	1550	3.080		
3	1510	3.063		
4	1435	3.021		
5	1530	3.030		
FcPh₂C	1460	3.100		
Fc₂PhC	1340	3.072		
Fc₃C	1090	2.834		

[b] Half-wave potential separation in mV. [b] From DFT calculations done in this work with charge 1 and multiplicity 1.

Figure S65: Comparison of cyclic voltammograms recorded after passing through the first (black lines) or the second (grey lines) reductions of cations 1^+-3^+ .

Figure S66: Cyclic voltammograms of 2^+ at $v = 100 \text{ mVs}^{-1}$ in 0.1 M CH₂Cl₂/NBu₄⁺ [PF₆]⁻.

Hammett Plots: Part II

Figure S68: Hammett plot for the redox potential separation between second and the first oxidations of the carbinol complexes **1-OH** – **4-OH** in NBu₄⁺ [BAr^F₂₄]⁻; σ_p (C₆F₁₃) is here approximated by the pink lines to +0.31.

Figure S69: Hammett plot for the oxidation and reduction potentials of the cationic complexes $\mathbf{1}^{+} - \mathbf{4}^{+}$ in NBu₄⁺ [BAr^F₂₄]⁻.

Figure S70: Hammett plot for the redox potential separation between the oxidation and the reduction of the cationic complexes $\mathbf{1}^+ - \mathbf{4}^+$ in in NBu₄⁺ [BAr^F₂₄]⁻.

UV/Vis/NIR Spectro(electro)chemical Data and TD-DFT calculations

Figure S71: Molecular orbital contributions to major transitions of complex **2**⁺ calculated *via* TD-DFT, EDDMs (electron density difference maps; blue: loss of electron density; red: gain in electron density). The top panel compares the experimental (black line) and the TD-DFT-calculated spectrum (blue line). A schematic assignment of the electronic transitions is given at the top right.

Figure S72: Molecular orbital contributions to major transitions of complex **3**⁺ calculated *via* TD-DFT, EDDMs (electron density difference maps; blue: loss of electron density; red: gain in electron density). The top panel compares the experimental (black line) and the TD-DFT calculated spectrum (blue line). A schematic assignment of the electronic transitions is given at the top right.

Figure S73: Molecular orbital contributions to major transitions of complex 5⁺ calculated *via* TD-DFT, EDDMs (electron density difference maps; blue: loss of electron density; red: gain in electron density). The top panel compares the experimental (black line) and the TD-DFT calculated spectrum (blue line). A schematic assignment of the electronic transitions is given at the top right.

complex and redox state	λ [nm] (ε [10³· Lmol ⁻¹ cm ⁻¹]) ^[b]
1'	561 (3.2), 516 (2.0), 348 (10.9)
1+	743 (5.3), 423 (9.7), 393 (10.8)
1 ²⁺	727 (1.9), 498 (3.7), 427 (5.1), 383 (6.4)
2*	563 (4.2), 511 (2.7), 391 (3.9), 345 (11.2)
2*	743 (7.0), 426 (12.3), 391 (13.6)
2 ²⁺	455 (4.0)
3*	560 (3.3), 524 (2.9), 346 (8.2)
3+	743 (6.0), 384 (13.1)
3 ²⁺	-
4*	1114 (0.5), 549 (5.4), 346 (9.8)
4+	761 (6.8), 389 (11.4)
4 ²⁺	745 (2.2), 495 (1.8), 377 (6.1)
5*	541 (3.7), 355 (7.9)
5⁺	752 (2.5), 391 (4.2)
5 ²⁺	739 (1.7), 628 (1.2), 384 (5.0)

Table S12: UV/Vis/NIR data^[a] of the complexes in their different redox states.

[a] In 1,2-C₂H₄Cl₂/0.25 mM NBu₄⁺ [BArF₂₄]⁻ at 293(±3) K. [b] Absorption coefficients ±50 L·mol⁻¹ cm⁻¹.

Figure S74: Spectroelectrochemistry of complex 2^+ . Left: Oxidation from 2^+ (blue line) to 2^{2+} (red line); top right: first reduction from 2^+ (blue line) to 2^- (green line); bottom right: second reduction from 2^- (green line) to 2^- (yellow line).

Figure S75: Spectroelectrochemistry of complex 3^+ . Left: Oxidation from 3^+ (blue line) to 3^{2+} (red line); right: reduction from 3^+ (blue line) to 3° (green line).

Figure S76: Spectroelectrochemistry of complex 5^+ . Left: Oxidation from 5^+ (blue line) to 5^{2+} (red line); right: reduction from 5^+ (blue line) to 5^- (green line).

Figure S77: IR and Vis/NIR spectroelectrochemistry (left) and chemically oxidized (1 eq. acetylferrocenium PF_{6}^{-}) spectra (right) of complex **2-OH**. Left: Oxidation from **2-OH** (orange line) to **2-OH**⁺ (red line); no IVCT bands are observed between 1250 nm (8000 cm⁻¹) and 2000 nm (5000 cm⁻¹); right: neutral carbinol **2-OH** (orange line in IR), chemically oxidized **2-OH**⁺ (red line in IR), in the Vis/NIR spectrum: cf. legend; for comparison: neutral acetylferrocene (AcFc, green line) and data from electrochemistry (cf. dotted line), note that nm- and cm⁻¹-scales are not linearly comparable.

T-dependent and quantitative EPR Spectroscopy

	g iso ^[b]	DI (20°C)	c _{spin} [mM]	C _{spin} / Cnom [b,c]	dimer amount ^[b,c]
1.	2.0267	0.16	4.7	24	76
			±0.48	±8	±8
2*	2.0270	0.12	3.4	17	83
			±0.34	±6	±6
3•	2.0282	0.23	6.8	34	66
			±0.68	±12	±12
4•	2.0301	0.17	4.9	25	75
			±0.50	±9	±9
5*	2.0284	0.24	7.0	35	65
			±0.71	±12	±12

Table S13: EPR data for all complexes.^[a]

[a] All samples were reduced with a slight excess (1.1 equiv.) of cobaltocene and contained a nominal concentration c_{nom} of 20±5 mM. [b] At 20 °C. [c] in %.

Figure S78: DFT-calculated spin density distributions for the reduced complexes 2° - 4°.

T-dependent EPR Spectroscopy

According to the Maxwell-Boltzmann relation of Equation 1, the signal intensity of a free radical is supposed to increase upon cooling due to a higher difference ΔN in occupancy between the ground and the excited states.

$$\Delta N \approx N \cdot \frac{g \cdot \mu_B \cdot B_0}{2k_B T} \tag{1}$$

Figure S79: *T*-dependent EPR spectra of **2**[•] and **4**[•] recorded in CH₂Cl₂.

Spin counting quantification method

According to Eaton et al.,¹ the spin count of an EPR sample can be measured by its double integral DI through Equation 2. Therefore, it is crucial to use the same sample preparation and measurement parameters for every measurement. This has been ensured for all quantitative analysis of this work (cf. Experimental Section).

$$DI = c_{ns} \frac{\sqrt{P} \cdot B_m \cdot Q \cdot n_B \cdot S \cdot (S+1) \cdot n_s}{f(B_1, B_m)}$$
(2)

- *B_m* Modulation amplitude
- Q Resonator's quality factor
- n_B Boltzmann factor for temperature dependence
- *S* Total electron spin (1/2)
- *n*_s Number of spins in the sample
- $f(B_1, B_m)$ Spatial distribution of microwave and modulation field in the sample

Evaluation of the data recorded at 20 °C has been done as follows:²

- 1) The background corrected spectrum (spectrum of pure CH₂Cl₂) was subtracted from the acquired spectrum
- 2) Zero-offset correction was applied
- 3) First integration was performed
- 4) Baseline correction of the first integration was applied
- 5) Second integration was performed
- 6) Double integral was determined from the results of the second integration
- 7) The spin concentration c_{spin} was determined *via* the linear equation established with the aid of the DPPH calibration curve (cf. Figure S80, Equation 3)
- 8) Calculated spin concentrations were then compared with the nominal concentrations c_{red} (Equation 4)

Figure S80: Calibration curve for quantitative EPR evaluation with 95% confidence and prediction band; lower right corner: magnification of the low concentration region.²

$$b(slope) = \frac{DI}{c_{spin}} \Rightarrow c_{spin} = \frac{DI}{b} = \frac{DI}{0.003415} mM$$
(3)

$$c_{red} = \frac{m}{M \cdot V} \tag{4}$$

Uncertainties (starting from: $u_m = 0.05$ mg, $u_V = 50 \mu L$, $u_b = 5.32 \times 10^{-4}$ for the calibration slope, $u_{DI} = 10 \%$ of the value of DI) were calculated using the GAUSSIAN formula for the propagation of uncertainties (5-7). Not included in these calculations is the error due to evaporation of solvent during sample preparation.

$$u_{c_{spin}} = \sqrt{\left(\frac{\partial c_{spin}}{\partial b} \cdot u_b\right)^2 + \left(\frac{\partial c_{spin}}{\partial DI} \cdot u_{DI}\right)^2} = \sqrt{\left(-\frac{DI}{b^2} \cdot u_b\right)^2 + \left(\frac{1}{b} \cdot u_{DI}\right)^2}$$
(5)

$$u_{c_{red}} = \sqrt{\left(\frac{\partial c_{red}}{\partial m} \cdot u_m\right)^2 + \left(\frac{\partial c_{red}}{\partial V} \cdot u_V\right)^2} = \sqrt{\left(\frac{1}{M \cdot V} \cdot u_m\right)^2 + \left(-\frac{m}{M \cdot V^2} \cdot u_V\right)^2}$$
(6)

$$u_{c_{spin}/c_{red}} = u_{ratio} = \sqrt{\left(\frac{\partial ratio}{\partial c_{spin}} \cdot u_{c_{spin}}\right)^2 + \left(\frac{\partial ratio}{\partial c_{red}} \cdot u_{c_{red}}\right)^2} = \sqrt{\left(\frac{1}{c_{red}} \cdot u_{c_{spin}}\right)^2 + \left(-\frac{c_{spin}}{c_{red}^2} \cdot u_{c_{red}}\right)^2} \cdot 100 \text{ in } [\%]}$$
(7)

Table S13 compiles all quantitative data, including the measured double integrals DI, the derived spin concentrations c_{spin} and the concentrations of the complexes with their error margins, as well as a comparison between the two concentrations for all investigated complexes **1°-5°**. In the absence of dimerization, the concentration of the reduced complex in solution is expected to be equal to the nominal concentration of spins [as reduction should be complete using 1.1 eq. of cobaltocene as the reducing agent in a partially reversible reduction process as in this case, cf. CV]. As noted in Table S13, the spin concentrations are far lower than the complex concentrations suggesting a dimerization process with the difference between the two concentrations (100% - c_{spin}/c_{red}) amounting to the dimerization ratio.

References

- 1 G. R. Eaton, S. S. Eaton, D. P. Barr and R. T. Weber, *Quantitative EPR: A Practitioners Guide*, Springer Verlag, Vienna, Austria, 1st edn., 2010.
- 2 L. A. Casper, L. Wursthorn, M. Geppert, P. Roser, M. Linseis, M. Drescher and R. F. Winter, *Organometallics*, 2020, **39**, 3275–3289.