Electronic supporting information for

The cation and anion bonding modes make the difference: unprecedented layered structure, a tetra(hetero)nuclear and a tri(hetero)nuclear moiety in thioantimonates(V)

Felix Danker, Tobias A. Engesser, Dario Broich, Christian Näther, and Wolfgang Bensch*

Sb(1)-S(2)	2.3235(13)	Cu(1)-N(2)#3	2.015(2)
Sb(1)-S(1)#1	2.3277(7)	Cu(1)-N(1)	2.022(2)
Sb(1)-S(1)#2	2.3277(7)	Cu(1)-N(1)#3	2.023(2)
Sb(1)-S(1)	2.3278(7)	Cu(1)-S(1)	2.962
S(2)-Sb(1)-S(1)#1	108.346(19)	Cu(1)-S(1)	2.960
S(2)-Sb(1)-S(1)#2	108.346(19)	N(2)-Cu(1)-N(2)#3	180.00(12)
S(1)#1-Sb(1)-S(1)#2	110.573(19)	N(2)-Cu(1)-N(1)	85.37(10)
S(2)-Sb(1)-S(1)	108.35(2)	N(2)#3-Cu(1)-N(1)	94.63(10)
S(1)#1-Sb(1)-S(1)	110.571(19)	N(2)-Cu(1)-N(1)#3	94.63(10)
S(1)#2-Sb(1)-S(1)	110.571(19)	N(2)#3-Cu(1)-N(1)#3	85.37(10)
Cu(1)-N(2)	2.015(2)	N(1)-Cu(1)-N(1)#3	180.0

Table S1: Selected bond lengths (Å) and angles (deg) of {[Cu(cyclam)]₃[SbS₄]₂}_n · 20nH₂O (I).^a

^aSymmetry transformations used to generate equivalent atoms: #1 -x+y, -x, z; #2 -y, x-y, z; #3 -x+5/3, -y+4/3, -z+4/3.

Table S2: Selected Hydrogen bonds (Å, deg) of	{[Cu(cyclam)]	₃ [SbS ₄] ₂ } _n •	20 <i>n</i> H ₂ O (I). ^a
-------------------------------------	------------	---------------	--	--

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O(1)-H(2O)O(3)	0.84	1.96	2.719(4)	150.07
O(2)-H(4O)O(3)#7	0.84	2.00	2.825(4)	167.26
O(3)-H(5O)O(2)	0.84	1.92	2.733(4)	162.03
O(3)-H(6O)O(4)	0.84	1.86	2.675(8)	162.54
O(3)-H(6O)O(4)#9	0.84	2.29	2.853(8)	124.92
O(3)-H(6O)O(4)#6	0.84	2.04	2.771(8)	145.63
O(1)-H(1O)S(1)#7	0.84	2.45	3.271(3)	165.37
O(2)-H(3O)S(1)#8	0.84	2.42	3.241(3)	164.81
N(2)-H(2)O(1)	1.00	2.19	3.025(3)	139.43
N(1)-H(1)S(2)#4	1.00	2.45	3.369(2)	152.60

^aSymmetry transformations used to generate equivalent atoms: #4 -x+2/3, -y+1/3, -z+4/3; #5 - x+y+1, -x+1, z; #6 x-y+2/3, x+1/3, -z+4/3; #7 -y+1, x-y+1, z; #8 y+1/3, x+2/3, -z+7/6; #9 y-1/3, -x+y+1/3, -z+4/3.

$O_{\rm L}(4) O(4)$			
SD(1)-S(1)	2.3562(9)	N(3)-ZN(1)-N(4)	82.82(12)
Sb(1)-S(2)	2.3213(8)	N(1)-Zn(1)-S(1)	99.81(8)
Sb(1)-S(3)	2.3153(9)	N(2)-Zn(1)-S(1)	104.57(8)
Sb(1)-S(4)	2.3153(9)	N(3)-Zn(1)-S(1)	106.33(8)
S(1)-Sb(1)-S(2)	106.11(3)	N(4)-Zn(1)-S(1)	102.51(8)
S(1)-Sb(1)-S(3)	109.47(3)	S(2)-Zn(2)	2.4580(12)
S(1)-Sb(1)-S(4)	107.36(3)	Zn(2)-N(11)	2.250(4)
S(2)-Sb(1)-S(3)	109.72(3)	Zn(2)-N(11)#1	1.960(4)
S(2)-Sb(1)-S(4)	108.78(3)	Zn(2)-N(12)	2.056(3)
S(3)-Sb(1)-S(4)	115.01(3)	Zn(2)-N(12)#1	2.217(3)
Sb(1)-S(1)-Zn(1)	104.45(3)	N(11)#1-Zn(2)-N(11)	154.41(6)
S(1)-Zn(1)	2.3798(8)	N(11)#1-Zn(2)-N(12)	98.15(13)
Zn(1)-N(1)	2.109(3)	N(11)#1-Zn(2)-N(12)#1	84.25(13)
Zn(1)-N(3)	2.115(3)	N(12)-Zn(2)-N(11)	81.28(12)
Zn(1)-N(2)	2.127(3)	N(12)-Zn(2)-N(12)#1	153.99(5)
Zn(1)-N(4)	2.130(3)	N(12)#1-Zn(2)-N(11)	85.58(12)
N(1)-Zn(1)-N(2)	82.83(13)	N(11)-Zn(2)-S(2)	97.59(9)
N(1)-Zn(1)-N(3)	153.44(11)	N(11)#1-Zn(2)-S(2)	107.31(10)
N(1)-Zn(1)-N(4)	87.08(13)	N(12)-Zn(2)-S(2)	103.50(10)
N(3)-Zn(1)-N(2)	94.91(12)	N(12)#1-Zn(2)-S(2)	100.40(9)

Table S3: Selected bond lengths (Å) and angles (deg) of {[Zn(cyclam)]₃[SbS₄]₂} · 8H₂O (II).^a

^aSymmetry transformations used to generate equivalent atoms: #1 -x+1, -y+1, -z+2.

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O(1)-H(2O1)O(5)	0.96	2.04	2.982(9)	165.30
O(2)-H(1O2)O(3)	0.96	1.84	2.744(9)	156.66
O(3)-H(1O3)O(4)	0.96	1.90	2.815(9)	157.74
O(4)-H(2O4)O(1)#5	0.96	1.92	2.803(10)	152.40
N(1)-H(1)S(2)#2	1.00	2.57	3.408(3)	140.92
N(1)-H(1)S(4)#2	1.00	2.91	3.651(3)	131.41
N(2)-H(2)S(4)	1.00	2.44	3.401(3)	160.60
N(3)-H(3)S(3)	1.00	2.36	3.349(3)	169.79
N(4)-H(4)S(4)#2	1.00	2.68	3.457(3)	135.03
N(11)-H(11)S(1)#1	1.00	2.57	3.489(3)	153.36
N(12)-H(12)S(3)	1.00	2.72	3.659(3)	157.39
O(1)-H(1O1)S(4)	0.96	2.30	3.176(5)	150.94
O(2)-H(2O2)S(3)	0.96	2.39	3.338(5)	172.10
O(4)-H(1O4)S(3)#5	0.96	2.43	3.354(6)	162.39

^aSymmetry transformations used to generate equivalent atoms: #1 -x+1, -y+1, -z+2; #2 x-1/2, -y+3/2, z-1/2; #5 -x+2, -y+1, -z+1.

Figure S1: The X-ray powder pattern of the thermal decomposition product of I recovered after the TG experiment at T = 500 °C (black) and the calculated pattern of $CuSbS_2$ (red).

Figure S2: PXRD pattern of the product of the thermogravimetric experiment of compound I stopped at T = 130 $^{\circ}$ C and the calculated pattern of I.

Figure S3: PXRD pattern of the product of the TG experiment of compound II at T = 500 °C (black), of calculated patterns of Sb (red) and wurtzite (green) and the measured pattern of sphalerite.

Figure S4: PXRD pattern of the product of the TG experiment of compound II stopped at T = 130 $^{\circ}$ C and the calculated pattern of II.

Figure S5: Comparison of the XRD pattern of the reaction product of compound I obtained at T = 130 °C after water uptake with the calculated pattern of I.

Figure S6: The XRD pattern of the rehydrated product of compound II and the calculated pattern for II.

Figure S7: EPR spectrum for compound I measured as suspension in a water/glycerine mixture (1:1) at 77 K.

Figure S8: Enlarged view of the IR spectra of compounds I and II. Some prominent absorptions labeled with the wavenumbers.

Figure S9: Raman spectra of compounds I and II.

Figure S10: Structures of $[(SbS_4){[Zn(cyclam)][SbS_4]}_3)^{6-}$ fragments used for the simulation of the environment and vibrational frequencies of $[SbS_4]^{3-}$ at PBE0/def2-SVP level of theory. The effect of the 0.5 occupancy of the Zn1 position in **II** on the coordinating anion is simulated by two versions with "inner" (**a**) and "outer" (**b**) Zn atoms, both exhibiting C_3 symmetry.

Figure S11: Left: The PXRD pattern of the product filtered after 5 min reaction time (black) and calculated pattern (red) of **I**. The inset shows a photograph of the violetgray powder; right: the experimental (red) and calculated (black) PXRD patterns of the homogeneous sample. The inset shows a micrograph of the crystals.

Figure S12: left: PXRD pattern of the solid formed after 5 min. (red) obtained during the synthesis of **II** compared with the pattern of **II** (black). The inset shows a photograph of the colorless precipitate; right: powder pattern of the phase pure sample with the same color code. The inset shows a picture of the crystals.

Computational details

Symmetry considerations

The most favourable symmetry of the $\{[M(cyclam)][SbS_4]_2\}^{4-}$ complexes (M = Cu, Zn) in the gas phase was determined by calculations of the corresponding energies on RI-BP86/def2-SVP level and as the structures seem to be highly affected by dispersion also with and without D3(BJ) correction (*Grimme's D3* method with Becke-Johnson damping (BJ)) (Table S5).

Table S5: Absolute and relative (free) energies of {[M(cyclam)][SbS ₄] ₂ } ⁴⁻ complexes
(M = Cu, Zn) in the gas phase with different possible symmetries and with and without
dispersion correction (D3(BJ)).

M	SCF	SCF	Н	G	G _{relative}
Symmetry	[Hartree/mol]	[kJ/mol]	[kJ/mol]	[kJ/mol]	[kJ/mol]
Cu					
C ₁	-5.920,4168	-15.544.048,5105	-15.543.026,6805	-15.543.298,8905	0
Cs*	-5.920,4032	-15.544.012,5848	-15.542.994,1548	-15.543.260,9448	37,95
<i>C</i> ₂ *	-5.920,4032	-15.544.012,5837	-15.542.994,1537	-15.543.260,9337	37,96
C_{2h}^{*}	-5.920,4032	-15.544.012,5841	-15.542.994,1541	-15.543.259,2341	39,66
D3-BJ corr.					
C ₁	-5.920,6053	-15.544.543,1835	-15.543.519,9035	-15.543.786,9835	0
Cs*	-5.920,5961	-15.544.519,0152	-15.543.499,4152	-15.543.758,5052	28,48
<i>C</i> ₂ *	-5.920,5961	-15.544.519,0207	-15.543.499,4307	-15.543.756,8107	30,17
C _{2h} *	-5.920,5961	-15.544.519,0160	-15.543.499,4260	-15.543.756,8060	30,18
Zn					
C ₁	-6.059,2943	-15.908.671,1359	-15.907.647,7059	-15.907.919,8259	0
Cs	-6.059,2943	-15.908.671,1034	-15.907.646,7234	-15.907.915,0434	4,78
D3-BJ corr.					
C ₁	-6.059,4802	-15.909.159,1519	-15908134,3719	-15908399,3219	0
Cs	-6.059,4802	-15.909.159,0915	-15908134,2215	-15908397,2415	2,08

* Symmetry breaking vibrations with imaginary frequencies were found (A", B or B_g).

All calculations were performed by using the TURBOMOLE program package.^[1] Structure optimizations were performed at the PBE0^[2]/def2-TZVPP^[3-5] level of theory and with and without Grimme's dispersion correction with Becke-Johnson damping (D3BJ)^[6] as well as the RI approximation^[7] to speed up the calculations. Calculation of vibrational frequencies and to prove that the optimized structure is a minimum on the potential energy surface the AOFORCE module was used,^[8] which is included in the TURBOMOLE program package.

Table S6: Most prominent resonances (cm⁻¹) in the Raman spectra of I, and II observed in Figure S9.

Compound

I	432	419	398	390	377	351	239	192	165	111
II	424	402	370	337	269	228	213	177	158	

	{[Cu(cyclam)]₃	{[Zn(cyclam)]₃
	$[SbS_4]_2_n \cdot 20nH_2O$ (I)	[SbS₄]₂} · 8 H₂O
		(II)
Crystal system	Trigonal	Monoclinic
Space group	<i>R</i> -3c	<i>P</i> 2₁/n
<i>M</i> (g mol ⁻¹)	151.91	1439.19
a (Å)	15.5565(4)	10.6285(2
b (Å)	15.5565(4)	23.7045(5)
c (Å)	48.5419(17)	11.9837(2)
α (°)	90	90
β (°)	90	105.130(2)
γ (°)	120	90
V (Å ³)	10173.5(6)	2914.55(10)
T (K)	170(2)	200(2)
Ζ	6	2
$D_{\text{calc.}}$ (g cm ⁻³)	1.633	1.640
μ (mm ⁻¹)	2.027	2.468
Scan range (°)	1.729 <u>< θ < </u> 27.005	1.718 <u>< θ <</u> 28.001
Reflections	29620	46226
collected		
Independent	2478	7024
reflections		
Min./max.	0.5805/0.8025	0.4640/0.7788
transm.		
R _{int}	0.0357	0.0373
Reflections with	2270	6224
$(I > 2\sigma(I))$		
	B 1 0 0000	54 0.0440
κ values ($l > 2\sigma$	R1 = 0.0386	R1 = 0.0412
(/))	WK2 = 0.1005	WK2 = 0.1144
Rvalues	<i>R1</i> = 0.0434	<i>R1</i> = 0.0466
(all data)	wR2 = 0.1042	<i>wR2</i> = 0.1196
Goodness-of-fit	1.144	1.055

Table S7: Details of the data collection and structure refinement results of compound I and II.

on <i>F</i> ²		
Res. elec. dens. (e Å ⁻³)	0.627 and -0.660	1.133 and -0.746

References

- R. Ahlrichs, M. Bär, M. Häser, H. Horn and C. Kölmel, *Chem. Phys. Lett.*, 1989, 162, 165; TURBOMOLE v7.2 2017, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007; available from <u>http://www.turbomole.com</u>.
- [2] J. P. Perdew, K. Burke, M. Ernzerhof, *Phys. Rev. Lett.* **1996**, *77*, 3865–3868.
- [3] A. Hellweg, C. Hättig, S. Höfener, W. Klopper, *Theor. Chem. Acc.* **2007**, *117*, 587–597.
- [4] F. Weigend, *Phys. Chem. Chem. Phys.* **2006**, *8*, 1057–1065.
- [5] F. Weigend, R. Ahlrichs, *Phys. Chem. Chem. Phys.* **2005**, *7*, 3297–3305
- [6] a) S. Grimme, J. Antony, S. Ehrlich, H. Krieg, *J. Chem. Phys.* 2010, 132, 154104; b) S. Grimme, S. Ehrlich, L. Goerigk, *J. Comput. Chem.* 2011, 32, 1456.
- [7] a) K. Eichkorn, H. Treutler, H. Öhm, M. Häser, R. Ahlrichs, Chem. Phys. Lett. **1995**, 283, 240; b) K. Eichkorn, F. Weigend, O. Treutler, R. Ahlrichs, Theor.
 Chem. Acc. **1997**, 97, 119; c) F. Neese, *J. Comput. Chem.* **2003**, 24, 1740.
- [8] O. Treutler, R. Ahlrichs, J. Chem. Phys. **1995**, 102, 346.