Electronic Supplementary Information

AIE material with time-dependent fluorescence conversion obtained by

2D coordination polymer modification via covalent post-synthetic

modification

Liancheng He, ^a Rui-dong Wang, ^a Shuyu Wang, ^a Rong-Rong zhu, ^a Zhihao Li, ^a Yuan-yuan Wu, ^a Jie Ma, ^c Lin Du^{*a,b} and Qi-Hua Zhao^{*a,b}

^aSchool of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China.

^bKey Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, Yunnan University, Kunming 650091, People's Republic of China.

^cSchool of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei 230601, People's Republic of China.

* Corresponding author.

E-mail: ghzhao@ynu.edu.cn; lindu@ynu.edu.cn; lindu@ynu.edu.cn; lindu@ynu.edu.cn; lindu@ynu.edu.cn; lindu@ynu.edu.cn; lindu@ynu.edu.cn; lindu@ynu.edu.cn); lindu@ynu.edu

Table of Contents

Figure S1 Coordination environment of Zn(II) centers with the hydrogen atoms and solvent
molecules omitted for clarity in HLC-NH ₂ (symmetry codes: (i) 1-x, 1-y, 1-z; (ii) -0.5+x, 0.5-y, -
0.5+z; (iii) 0.5-x, -0.5+y, 0.5-z; (iv) 0.5+x, 0.5-y, 0.5+z; (v) 0.5-x, 0.5+y, 0.5-z)4
Figure S2 N_2 adsorption isotherms of the HLC-NH ₂ and HLC-NH ₂ -TPE carried out at 77K (insert
shows pore size distribution plot)5
Figure S3 XPS spectra for HLC-NH ₂ 6
Figure S4 XPS spectra for HLC-NH ₂ -TPE6
Figure S5 Solid-state fluorescence spectra of HLC-NH ₂ -TPE (λ_{ex} =330nm)7
Figure S6 Fluorescence response of HLC-NH ₂ towards Fe ³⁺ ions: (a) fluorescence intensities of
$HLC-NH_2$ in the solution of different metal ions; (b) emission spectra of $HLC-NH_2$ in water with
different concentrations of Fe ³⁺ 7
Figure S7 Fluorescence response of $HLC-NH_2$ towards CrO_4^{2-} ions: (a) fluorescence intensities of
$HLC-NH_2$ in the solution of different anions; (b) emission spectra of $HLC-NH_2$ in water with
different concentrations of CrO ₄ ²⁻ 8
Figure S8 (a) The relationship between $[I_0/I]$ and concentration of Fe ³⁺ for HLC-NH ₂ . (b) The
relationship between $[I_0/I]$ and concentration of CrO_4^{2-} for HLC-NH ₂ 8
Figure S9 Fluorescence intensities of HLC-NH ₂ -TPE in the solution of different metal ions9
Figure S10 Fluorescence intensities of HLC-NH ₂ -TPE in the solution of different anions
Figure S11 Luminescence spectrum of HLC-NH ₂ -TPE and TPE-CHO in THF/H ₂ O solution10
Figure S12 Luminescence photo of HLC-NH ₂ -TPE in water under UV light
Figure S13 Luminescence spectrum of HLC-NH ₂ -TPE in DMSO/H ₂ O solution11
Figure S14 CIE properties of HLC-NH ₂ -TPE in DMSO/H ₂ O solution12
Figure S15 Luminescence intensity of HLC-NH ₂ -TPE in DMSO/H ₂ O solution
Figure S16 Luminescence spectrum of HLC-NH ₂ -TPE in THF/H ₂ O solution13
Figure S17 CIE properties of HLC-NH ₂ -PE in THF/H ₂ O solution13
Figure S18 Luminescence intensity of HLC-NH ₂ -TPE in THF/H ₂ O solution14
Figure S19 Photographs of HLC-NH ₂ , HLC-NH ₂ -TPE, TPE-CHO under the UV light14
Figure S20 TEM photographs of HLC-NH ₂ -TPE15

Reference	19
Table S3. Selected bond lengths [Å] and angles [°] for HLC-NH2	18
Table S2. Crystal Data and Structure Refinement Summary for HLC-NH2	18
Table S1. The comparation table on AIEgens modified MOFs and CP	17
Figure S22 FTIR spectrum of DBd ligand, HLC-NH ₂ , TPE-CHO and HLC-NH ₂ -TPE	16
Figure S21 DLS photographs of HLC-NH ₂ -TPE in DMF/H ₂ O system	15

Figure S1 Coordination environment of Zn(II) centers with the hydrogen atoms and solvent molecules omitted for clarity in HLC-NH₂ (symmetry codes: (i) 1-x, 1-y, 1-z; (ii) -0.5+x, 0.5-y, -0.5+z; (iii) 0.5-x, -0.5+y, 0.5-z; (iv) 0.5+x, 0.5-y, 0.5+z; (v) 0.5-x, 0.5+y, 0.5-z)

Figure S2 N₂ adsorption isotherms of the HLC-NH₂ and HLC-NH₂-TPE carried out at 77K (insert shows pore

size distribution plot)

Figure S3 XPS spectra for $HLC\text{-}NH_2$

Figure S4 XPS spectra for HLC-NH₂-TPE

Figure S5 Solid-state fluorescence spectra of HLC-NH₂-TPE (λ_{ex} =330nm)

Figure S6 Fluorescence response of HLC-NH₂ towards Fe^{3+} ions: (a) fluorescence intensities of HLC-NH₂ in the solution of different metal ions; (b) emission spectra of HLC-NH₂ in water with different concentrations of Fe^{3+} .

Figure S7 Fluorescence response of **HLC-NH**₂ towards CrO_4^{2-} ions: (a) fluorescence intensities of **HLC-NH**₂ in the solution of different anions; (b) emission spectra of **HLC-NH**₂ in water with different concentrations of CrO_4^{2-} .

Figure S8 (a) The relationship between $[I_0/I]$ and concentration of Fe³⁺ for HLC-NH₂. (b) The relationship between $[I_0/I]$ and concentration of CrO₄²⁻ for HLC-NH₂.

Figure S9 Fluorescence intensities of HLC-NH₂-TPE in the solution of different metal ions.

Figure S10 Fluorescence intensities of HLC-NH₂-TPE in the solution of different anions.

Figure S11 Luminescence spectrum of HLC-NH₂-TPE and TPE-CHO in THF/H₂O solution

Figure S12 Luminescence photo of $HLC-NH_2$ -TPE in water under UV light.

Figure S13 Luminescence spectrum of HLC-NH₂-TPE in DMSO/H₂O solution

Figure S14 CIE properties of HLC-NH₂-TPE in DMSO/H₂O solution

Figure S15 Luminescence intensity of HLC-NH₂-TPE in DMSO/H₂O solution

Figure S16 Luminescence spectrum of HLC-NH₂-TPE in THF/H₂O solution

Figure S17 CIE properties of $HLC-NH_2-PE$ in THF/H₂O solution

Figure S18 Luminescence intensity of $HLC-NH_2-TPE$ in THF/H₂O solution

Figure S19 Photographs of HLC-NH₂, HLC-NH₂-TPE, TPE-CHO under the UV light

Figure S20 TEM photographs of HLC-NH₂-TPE

Figure S21 DLS photographs of HLC-NH₂-TPE in DMF/H₂O system

Figure S22 FTIR spectrum of DBd ligand, HLC-NH₂, TPE-CHO and HLC-NH₂-TPE

Skeleton	AIEgens	Method Application		Reference
ZIF-8	APMP and its derivatives	binding	Fluorescent probe ¹	1
ZIF-8	AuNCs	encapsulation	Fluorescent probe ²	2
CD-MOF	L-Cys/Au(I)	co-crystallization	Fluorescence Complex ³	3
MOF-199 TPATrzPy-3+		load	Photodynamic Therapy ⁴	4
KUMOF	TPE-CL4	crosslinking reaction	Crystal crosslinked gels ⁵	5
ZIF-8	HDBB	encapsulation	Fluorescent probe ⁶	6
Cu-MOF	PS	load	Photodynamic Therapy ⁷	7
NUS-13	BODCA	organic ligand replacement	Fluorescence sensor ⁸	8
UiO-66	TPE-COOH	organic ligand replacement	Fluorescence sensor ⁹	9
MIL-100	PS	encapsulation	Photodynamic Therapy ¹⁰	10
γ-CD-MOF-K	TPE	encapsulation	Fluorescence detectors ¹¹	11
UiO-68	H ₂ -etpdc	organic ligand replacement	Photocatalytic and	12
			Fluorescent probe ¹²	
HLC-NH ₂	TPE-CHO	covalent post-synthetic	Fluorescence sensor	This work
		modification		

 Table S1. The comparation table on AIEgens modified MOFs and CP

Name	HLC-NH ₂	
formula	$C_{28}H_{26}N_4O_{11}Zn_2$	
molecular weight	725.27	
crystal system	Monoclinic	
space group	P21/n	
<i>a</i> (Å)	7.9486 (9)	
<i>b</i> (Å)	12.9217 (15)	
<i>c</i> (Å)	13.9630(17)	
α (deg)	90	
β (deg)	90.085 (6)	
γ (deg)	90	
V (Å ³)	1434.1 (3)	
Z	2	
D _{calcd} (g⋅cm ⁻³)	1.680	
μ (ΜοΚ _α) (mm ⁻¹)	1.742	
F(000)	740.0	
reflections collected/unique	13943/2885	
R _{int}	0.0834	
data/restraints/parameters	2885/0/211	
GOF on F ₂	1.087	
$R_1^{[a]}/wR_2^{[b]}[l > 2\sigma(l)]$	0.0565,0.1350	
$R_1^{[a]}/wR_2^{[b]}$ [all data]	0.0868,0.1599	
largest residues (e A^{-3})	0.81/-0.97	

Table S2. Crystal Data and Structure Refinement Summary for $HLC-NH_2$

^[a] $R1 = \sum ||F_o| - |F_c|| / \sum |F_o|$, ^[b] $wR^2 = [\Sigma w(F_o^2 - F_c^2)^2 / \Sigma w(F_o^2)^2]^{1/20}$

Table S3. Selected bond lengths [Å] and angles [°] for $HLC-NH_2$

Zn1-05	1.983 (3)	Zn1-03	1.975 (3)
Zn1-01	1.978 (3)	Zn1-N1	2.028 (4)
01-C1	1.314 (6)	O3-C6	1.295 (6)
O4-C6	1.232 (6)	02-C1	1.239 (6)
N1-C7	1.444 (6)	N2-C4	1.417 (6)
05-Zn1-N1	116.65 (15)	01-Zn1-05	112.19 (14)
01-Zn1-N1	107.11 (16)	03-Zn1-05	105.00 (15)
03-Zn1-N1	116.08 (16)	03-Zn1-01	98.43 (14)

Reference

- 1. S. Xie, Q. Liu, F. Zhu, M. Chen, L. Wang, Y. Xiong, Y. Zhu, Y. Zheng and X. Chen, *Journal of Materials Chemistry C*, 2020, **8**, 10408-10415.
- 2. Y. Cai, H. Zhu, W. Zhou, Z. Qiu, C. Chen, A. Qileng, K. Li and Y. Liu, *Anal Chem*, 2021, **93**, 7275-7282.
- 3. W. Michida, A. Nagai, M. Sakuragi, T. Okobira and K. Kusakabe, *Processes*, 2020, 8.
- 4. Y. Wang, S. Xu, L. Shi, C. Teh, G. Qi and B. Liu, *Angew Chem Int Ed Engl*, 2021, **60**, 14945-14953.
- 5. T. Oura, R. Taniguchi, K. Kokado and K. Sada, *Polymers (Basel)*, 2017, 9.
- 6. S. Yang, S. Lu, Y. Cheng, Z. Lu, X. Liu, Y. Qin, R. Zhao, L. Zheng and Q. Cao, *Microporous Mesoporous Mater.*, 2020, **294**.
- 7. Y. Wang, X. Liu, W. Wu, D. Mao, B. Wang, G. Tang and B. Liu, *Advanced Therapeutics*, 2020, **3**.
- J. Dong, P. Shen, S. Ying, Z.-J. Li, Y. D. Yuan, Y. Wang, X. Zheng, S. B. Peh, H. Yuan, G. Liu, Y. Cheng, Y. Pan, L. Shi, J. Zhang, D. Yuan, B. Liu, Z. Zhao, B. Z. Tang and D. Zhao, *Chem. Mater.*, 2020, **32**, 6706-6720.
- 9. X. Gao, L. Pei, W. Xue, H. Huang, Z. Gao and X. Zhao, *Chinese Journal of Chemistry*, 2020, **39**, 99-105.
- 10. Y. Wang, L. Shi, W. Wu, G. Qi, X. Zhu and B. Liu, Advanced Functional Materials, 2021, 31.
- Z. J. Qiu, S. T. Fan, C. Y. Xing, M. M. Song, Z. J. Nie, L. Xu, S. X. Zhang, L. Wang, S. Zhang and B. J. Li, ACS Appl Mater Interfaces, 2020, 12, 55299-55307.
- 12. Q. Y. Li, Z. Ma, W. Q. Zhang, J. L. Xu, W. Wei, H. Lu, X. Zhao and X. J. Wang, *Chem Commun* (*Camb*), 2016, **52**, 11284-11287.