Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2021

## **Electronic Supplementary Information**

## Isotypic lanthanide-organic frameworks and scintillating films with colour-tunable X-ray radioluminescence for imaging applications

Qi Gu,<sup>a,b</sup> Wenqian Wang,<sup>a</sup> Hao Lu<sup>a,c</sup>, Xi Chen<sup>a,b</sup>, Shuaihua Wang<sup>\*,a</sup> and

Shaofan Wu<sup>a</sup>

Qi Gu: guqi@fjirsm.ac.cn Wenqian Wang: wwq@fjirsm.ac.cn Hao Lu: luhao@fjirsm.ac.cn Xi Chen: xichen@fjirsm.ac.cn Shuaihua Wang: shwang@fjirsm.ac.cn Shaofan Wu: sfwu@fjirsm.ac.cn

<sup>a</sup>Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China <sup>b</sup>University of Chinese Academy of Sciences, Beijing 100049, P.R. China <sup>c</sup>College of Chemistry and Chemical Engineering, Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China.



Fig. S1 The powdered X-ray diffraction (PXRD) patterns of LnOF-1 and LnOF-2.



Fig. S2 The TG&DTA curves of (a) LnOF-1 and (b) LnOF-2.



Fig. S3 The bridging modes of bmb<sup>-</sup> ligand.



**Fig. S4** (a) The asymmetric unit of LnOF-2. The symmetric codes for compound: #1 x, 3/2 - y, 1/2 + z; #2 x, 1/2 - y, -1/2 + z; #3 1 - x, 1/2 + y, 1/2 - z; #4 1 - x, -1/2 + y, 1/2 - z. (b) Illustration of the complete crystal structure of LnOF-2. (c) The coordination condition and connection mode of Eu<sup>3+</sup> in the *bc* plane. (d) The distance between two benzimidazole groups from the adjacent layered structure is ca. 3.620 Å. Color code: Eu (olive green), O (red), N (blue), C (gray). For clarity, all hydrogen atoms are omitted.



Fig. S5 The photoluminescence spectra of (a) LnOF-1 ( $\lambda_{ex} = 314 \text{ nm}$ ) and (b) LnOF-2 ( $\lambda_{ex} = 312 \text{ nm}$ ).



Fig. S6 The photoluminescence decay curves of (a) LnOF-1 and (b) LnOF-2.



Fig. S7 The XEL spectra of Hbmb ligand, LnOF-1 and LnOF-2 with the X-ray tube voltage of 50 kV and the tube current of 100  $\mu$ A.



Fig. S8 The PL/PLE spectrum of Hbmb ligand.



Fig. S9 The XEL spectra of powdered (a)  $PbWO_4$  and (b)  $BaF_2$  under exposure of X-ray tube with voltage fixed at 50 kV, current ranging from 60 to 100  $\mu$ A.



**Fig. S10** The powdered X-ray diffraction (PXRD) patterns of  $Eu_xTb_{1-x}$ -LnOFs. A~J represent that the doping ratios of  $Eu^{3+}$  and  $Tb^{3+}$  are 0.1% : 99.9%, 0.3% : 99.7%, 0.5% : 99.5%, 0.8% : 99.2%, 1% : 99%, 2% : 98%, 3% : 97%, 5% : 95%, 8% : 92% and 10% : 90%, respectively.



**Fig. S11** (a) The photoluminescence spectra of  $Eu_xTb_{1-x}$ -LnOFs ( $\lambda_{ex} = 312$  nm). (b) Linear CIE chromaticity diagram of photoluminescence for  $Eu_xTb_{1-x}$ -LnOFs. (c) The photograph of  $Eu_xTb_{1-x}$ -LnOFs under UV lamp.



Fig. S12 Schematic diagram of the self-built X-ray imaging system.



Fig. S13 The light intensity values corresponding to bright  $(I_{max})$  and dark  $(I_{min})$  stripes of each line pair.

| Crystal data                                      | LnOF-1                 | LnOF-2                 |
|---------------------------------------------------|------------------------|------------------------|
| CCDC number                                       | 2108315                | 2108316                |
| Empirical formula                                 | $C_{42}H_{29}N_6O_7Tb$ | $C_{42}H_{29}N_6O_7Eu$ |
| Formula weight                                    | 888.64                 | 881.68                 |
| Temperature                                       | 293(2)                 | 293(2)                 |
| Wavelength (Å) /Mo $K_{\alpha}$                   | 1.3405                 | 1.3405                 |
| Crystal system                                    | monoclinic             | monoclinic             |
| Space group                                       | $P2_{1}/c$             | $P2_{1}/c$             |
| <i>a</i> (Å)                                      | 17.6637(2)             | 17.6275(11)            |
| <i>b</i> (Å)                                      | 22.0021(2)             | 22.066(1)              |
| <i>c</i> (Å)                                      | 9.5719(1)              | 9.6033(4)              |
| α (°)                                             | 90                     | 90                     |
| eta (°)                                           | 94.459(1)              | 94.622(5)              |
| γ (°)                                             | 90                     | 90                     |
| $V(Å^3)$                                          | 3708.75(7)             | 3723.2(3)              |
| Ζ                                                 | 4                      | 4                      |
| Calcd. density (g cm <sup><math>-3</math></sup> ) | 1.592                  | 1.573                  |
| Absorption coefficient (mm <sup>-1</sup>          | 10.221                 | 9.114                  |
| )                                                 |                        |                        |
| <i>F</i> (000)                                    | 1776                   | 1768                   |
| Reflections collected                             | 46785                  | 47746                  |
| Completeness to $\theta = 53.54^{\circ}$          | 98.6%                  | 98.6%                  |
| Data/restraints/parameters                        | 8420/0/508             | 7387/3/512             |

Table S1 Crystallographic data for compounds.

| Goodness-of-fit on $F^2$                                                                                                                            | 1.015           | 1.071           |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|--|
| Final <i>R</i> indices $[I > 2\sigma(I)]$                                                                                                           | $R_1 = 0.0303$  | $R_1 = 0.0334$  |  |
|                                                                                                                                                     | $wR_2 = 0.0759$ | $wR_2 = 0.0883$ |  |
| ${}^{a}R_{1} = \sum (F_{o} - F_{c}) / \sum F_{o}. {}^{b}wR_{2} = \left[ \sum w (F_{o}^{2} - F_{c}^{2})^{2} / \sum w (F_{o}^{2})^{2} \right]^{1/2}.$ |                 |                 |  |

**Table S2** The  $Z_{eff}$  values (Tables S2<sup>†</sup>) of LnOF-1, LnOF-2 and some traditional inorganic scintillator materials.

| Compounds         | $Z_{\rm eff}$ |
|-------------------|---------------|
| LnOF-1            | 42.27         |
| LnOF-2            | 40.60         |
| PbWO <sub>4</sub> | 75.6          |
| $BaF_2$           | 52.7          |
| $Bi_4Ge_3O_{12}$  | 75.2          |

Empirical formulas (for a compound  $A_x B_y C_z$ ):

 $Z_{eff} = [(xM_aZ_a^4 + yM_bZ_b^4 + zM_cZ_c^4)/(xM_a + yM_b + zM_c)]^{1/4}$ 

where  $M_a$ ,  $M_b$  and  $M_c$  are the atomic masses of A, B and C, respectively;  $Z_a$ ,  $Z_b$  and  $Z_c$  are atomic numbers of A, B and C, respectively.

 $LnOF-1 (C_{42}H_{29}N_6O_7Tb):$ 

$$\begin{split} &Z_{eff} = [(42 \times 12.01 \times 6^4 + 29 \times 1.008 \times 1^4 + 6 \times 14.007 \times 7^4 + 7 \times 16.00 \times 8^4 + 1 \times 158.923 \times 65^4)/(42 \times 12.01 + 29 \times 1.008 + 6 \times 14.007 + 7 \times 16.00 + 1 \times 158.923)]^{1/4} \\ = &42.27 \end{split}$$

LnOF-2 (C<sub>42</sub>H<sub>29</sub>N<sub>6</sub>O<sub>7</sub>Eu):

$$\begin{split} &Z_{eff} = [(42 \times 12.01 \times 6^4 + 29 \times 1.008 \times 1^4 + 6 \times 14.007 \times 7^4 + 7 \times 16.00 \times 8^4 + 1 \times 151.964 \times 63^4)/(42 \times 12.01 + 29 \times 1.008 + 6 \times 14.007 + 7 \times 16.00 + 1 \times 151.964)]^{1/4} \\ = &40.60 \end{split}$$