Supporting information

Ru@N/S/TiO₂/rGO: A High Performance HER Electrocatalyst Prepared by Dye-Sensitization

Hai-Lang Jia*a, Jiao Zhao, a Zhiyuan Wang, b Rui-Xin Chen, a Ming-Yun Guana

^aSchool of Chemical and Environmental Engineering, Institute of Advanced Functional Materials
for Energy, Jiangsu University of Technology, Changzhou 213001, P. R. China.
^bPLA Army Academy of Artillery and Air Defense, Hefei, 230031, P. R. China.

Fig. S1 SEM of Ru@N/S/TiO₂/rGO

Fig. S2 TEM of $Ru@N/S/TiO_2/rGO$

Fig. S3 HR-TEM of Ru@N/S/TiO₂/rGO

Fig. S4 Particle size distribution of $Ru@N/S/TiO_2/rGO$

Fig. S5 XRD of Ru@N/S/TiO₂/rGO

Fig. S6 High-resolution XPS spectra of Ru3d of Ru@N/S/TiO2/rGO

Fig. S7 EIS of $Ru@N/S/TiO_2/rGO$ and Pt/C in 0.5 M H_2SO_4 .

Fig. S8 EIS of Ru@N/S/TiO₂/rGO and Pt/C in 1 M KOH.

Fig. S9 CV curves of $Ru@N/S/TiO_2/rGO$ at various scan rates in 0.5 M H₂SO₄, charging current density differences plotted against scan rates. The linear slope, equivalent to twice the double-layer capacitance, Cdl was used to represent the rECSA.

Fig. S10 CV curves of Ru@N/S/TiO₂/rGO at various scan rates in 1 M KOH, charging current density differences plotted against scan rates. The linear slope, equivalent to twice the double-layer capacitance, Cdl was used to represent the rECSA.

Fig. S11 LSVs of Ru@N/S/TiO₂/rGO catalysts before and after 5000 cycles in 0.5 M H_2SO_4 .

Fig. S12 LSVs of $Ru@N/S/TiO_2/rGO$ catalysts before and after 5000 cycles in 1 M KOH.

Fig. S13 XRD of $Ru@N/S/TiO_2/rGO$ catalysts after 5000 cycles CV.

Fig. S14 SEM of Ru@N/S/TiO₂/rGO catalysts after 5000 cycles CV.

Fig. S15 EDS mapping of Ru@N/S/TiO₂/rGO catalysts after 5000 cycles CV.

Fig. S16 TOF of Ru@N/S/TiO_/rGO catalysts in 0.5M $\rm H_2SO_4$ and 1M KOH.

Table S1. Summary of HER catalytic activities of $Ru@N/S/TiO_2/rGO$ and some other catalysts reported in recent literatures (the potential is obtained at a current density of 10 mA cm⁻² for HER in 0.5 M H₂SO₄).

Catalysts	HER Overpotential	Tafel Slope	Ref.
	$@10 \text{ mA cm}^{-2} (\text{mV})$	(mV dec ⁻¹)	
Ru@N/S/TiO ₂ /rG	60	51	In this work
0			
CoSAs/PTF-600	94	50	J. Mater. Chem., A,
			2019, 7, 1252.
MWCNTs	17	27	Nat. Commun., 2020, 11, 1278.
MoS ₂ -60 s	131	48	J. Am. Chem. Soc., 2020, 142, 4298.
L-Ag	136	71	Nature Catalysis, 2020, 2, 1107.
Ru@GnP	13	30	Adv. Mater., 2018, 1803676
NPNi-MoS ₂ /RGO	/	71	ACS Catal., 2018, 8, 8107.
C ₃ N ₄ -Ru	140	57	J. Mater. Chem. A, 2017, 5, 18261.
Rh-Rh ₂ P@C	24	36	J. Mater. Chem. A, 2020 ,8, 12378.
WC1–X	247	/	ACS Appl. Energy Mater., 2020, 3, 1082.
$Fe_{40}Co_{40}P_{13}C_7$	118	46	ACS Appl. Mater. Interfaces, 2017, 9, 37, 31340.
IrO ₂ -CoPi-CNT	29	27	J. Mater. Chem. A, 2020, 8, 8273.
B12/G800A	115	65	J. Mater. Chem. A, 2019, 7, 7179.
FePc-MoS ₂	123	32	Nanoscale, 2019, 11, 14266.
CoSAs/PTF-600	94	50	J. Mater. Chem. A, 2019, 7, 1252.
Co:WS ₂	240	49	Energy Environ. Sci., 2018, 11, 2270.
D-TiO ₂ /Co@NCT	167	73	Nano Res., 2017, 10, 2599.
RuP ₂ @NPC	38	38	Angew. Chem. Int. Ed., 2017, 56, 11559.

Table S2. Summary of HER catalytic activities of $Ru@N/S/TiO_2/rGO$ and some other catalysts reported in recent literatures (the potential is obtained at a current density of 10 mA cm⁻² for HER in 1 M KOH).

Catalysts	HER Overpotential	Tafel Slope	Ref.
	$@10 \text{ mA cm}^{-2} (\text{mV})$	(mV dec ⁻¹)	
Ru@N/S/TiO ₂ /rG	5	45	In this work
0			
MWCNTs	16	27	Nat. Commun., 2020,
			11, 1278.
Ru@GnP	22	28	Adv.Mater., 2018,
			1803676.
Co ₃ S ₄ @FNC-Co3	140	103	Carbon, 2020, 160, 133.
MoS ₂ /NiS	244	97	Small, 2019, 15, 1803639.
MoS ₂ /Ni ₃ S ₂	110	88	Angew. Chem. Int. Ed., 2016, 55, 6702.
Ni ₃ FeN/rGO	94	90	ACS Nano., 2018, 12,
			245.
Ni-Co-P HNBs	107	76	Energy Environ. Sci.,
			2018, 11, 872.
Rh-Rh ₂ P@C	37	32	J. Mater. Chem. A,
			2020, 8, 12378.
WC1–X	216		ACS Appl. Energy
			Mater., 2020, 3, 1082.
c-Ni@a-Ni(OH) ₂	57	45	J. Mater. Chem. A,
			2020, 8, 23323.
P-rich IrP ₂ @NC	28	/	Energy Environ. Sci., 2019, 12, 952.
RuP ₂ @NPC	52	69	Angew. Chem. Int. Ed.,
			2017, 56, 11559.
CoP/CC	209	129	J. Am. Chem. Soc.,
			2014, 136, 7587.
WP NAs/CC	150	102	ACS Appl Mater
			Interfaces, 2014, 6,
			21874.
MoP NA/CC	80	83	Appl. Catal. B:
			Environ., 2016, 196,
			193.
$MoP_2 NPs/Mo$	194	80	Nanoscale, 2016, 8,
	100	102	8500.
CO-NCN I/CC	180	193	CnemSusChem, 2015, 8, 1850.