Supporting Information for

Bi^{3+} photoluminescence in $Y_{1-x}Bi_xCa_3(GaO)_3(BO_3)_4$ and the energy transfer to Eu^{3+} and Tb^{3+} in co-doped physophors

Yan Gao, Huayu Qian, Pengfei Jiang, Rihong Cong,* Tao Yang*

College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331,

People's Republic of China

*E-mails: congrihong@cqu.edu.cn; taoyang@cqu.edu.cn

Cations in host	Bi ³⁺	R_h	R_d	D _r (%)
Y^{3+} (CN = 6)	Bi^{3+} (CN = 6)	0.9 Å	1.03 Å	-14.4
$Ca^{2+}(CN = 6)$	$Bi^{3+}(CN = 6)$	1 Å	1.03 Å	-0.03
$Ga^{3+}(CN = 6)$	$Bi^{3+}(CN = 6)$	0.62 Å	1.03 Å	-66.1

Table S1. Cationic radii difference percentage (D_r) between Bi³⁺ and host cations in YCGB

Table S2. Cell lattice parameters for $Y_{1-x}Bi_xCa_3(GaO)_3(BO_3)_4$ (0.01 $\leq x \leq$ 0.15), $Y_{0.95-y}Bi_{0.05}Eu_yCa_3(GaO)_3(BO_3)_4$ (0.05 $\leq y \leq$ 0.6) and $Y_{0.95-y}Bi_{0.05}Tb_zCa_3(GaO)_3(BO_3)_4$ (0.05 $\leq z \leq$ 0.6) obtained from Le Bail fitting on the powder XRD (space group: $P6_3/m$)

x in Y _{1-x} Bi _x Ca ₃ (GaO) ₃ (BO ₃) ₄	<i>a</i> (Å)	c (Å)	$V(\text{\AA}^3)$	
0.01	10.5191(1)	5.8157(1)	557.30(2)	
0.02	10.5195(1)	5.8158(1)	557.35(1)	
0.03	10.5196(1)	5.8161(2)	557.39(1)	
0.04	10.5199(2)	5.8164(1)	557.45(2)	
0.05	10.5205(1)	5.8163(1)	557.49(2)	
0.1	10.5222(2)	5.8169(1)	557.74(2)	
0.15	10.5232(1)	5.8178(1)	557.93(2)	
<i>y</i> in Y _{0.95-}	a (Å)		3	
yBi _{0.05} EuyCa ₃ (GaO) ₃ (BO ₃) ₄	<i>a</i> (A) <i>c</i> ($V(\mathbf{A}^{*})$	
0.05	10.5228(1)	5.81656(8)	557.77(2)	

0.1	10.5243(1)	5.81629(8)	557.91(1)
0.2	10.5279(1)	5.81701(8)	558.36(1)
0.3	10.5330(1)	5.81752(8)	558.95(2)
0.4	10.5367(1)	5.81840(9)	559.43(2)
0.5	10.5410(1)	5.81940(9)	559.98(2)
0.6	10.5448(1)	5.82034(9)	560.48(2)

z in Y _{0.95-y} Bi _{0.05} Tb _z Ca ₃ (GaO) ₃ (BO ₃) ₄	a (Å)	c (Å)	$V(\text{\AA}^3)$
0.05	10.5221(1)	5.81668(8)	557.72(1)
0.1	105230(1)	5.81742(9)	557.88(2)
0.2	10.5251(1)	5.81746(9)	558.10(2)
0.3	10.5279(1)	5.81753(9)	558.41(2)
0.4	10.5307(1)	5.81781(9)	558.74(2)
0.5	10.5320(1)	5.81825(8)	558.91(2)
0.6	10.5339(1)	5.81899(9)	559.19(2)

Table S3. CIE chromaticity coordinates for $Y_{0.95-y}Bi_{0.05}Eu_yCa_3(GaO)_3(BO_3)_4$ ($0 \le y \le 0.6$) and $Y_{0.95-y}Bi_{0.05}Tb_zCa_3(GaO)_3(BO_3)_4$ ($0.05 \le z \le 0.6$) excited by ~280 nm irradiation

y in Y _{0.95-y} Bi _{0.05} Eu _y Ca ₃ (GaO) ₃ (BO) ₄	CIE (x, y)
0	(0.162, 0.017)

0.05	(0.208, 0.052)
0.1	(0.259, 0.088)
0.2	(0.363, 0.158)
0.3	(0.451, 0.221)
0.4	(0.513, 0.262)
0.5	(0.559, 0.283)
0.6	(0.583, 0.298)

z in Y_{0.95-z}Bi_{0.05}Tb_zCa₃(GaO)₃(BO)₄

0.05	(0.176, 0.072)
0.1	(0.186, 0.117)
0.2	(0.212, 0.224)
0.3	(0.235, 0.315)
0.4	(0.250, 0.374)
0.5	(0.261, 0.420)
0.6	(0.269, 0.451)

Fig. S1. Plot of unit cell volume for (a) $Y_{0.95-y}Bi_{0.05}Eu_yCa_3(GaO)_3(BO_3)_4$ (0.05 $\leq y \leq 0.6$), (b) $Y_{0.95-y}Ca_3(GaO)_3(BO_3)_4$ (b) $Y_{0.95-y}Ca_3(GaO)_3(FaO_3)_4$ (b) $Y_{0.95-y}Ca_3(FaO_3)_4$ (b)

 $_{y}Bi_{0.05}Tb_{z}Ca_{3}(GaO)_{3}(BO_{3})_{4}$ (0.05 $\leq z \leq 0.6$) obtained from Le Bail fitting.

Fig. S2. (a) Temperature-dependent PL emission spectra for Y_{0.35}Bi_{0.05}Tb_{0.6}Ca₃(GaO)₃(BO₃)₄ under

the irradiation of 273 nm and (b) the normalized emission intensity of Tb^{3+} .

Fig. S3. (a) Temperature-dependent PL emission spectra for $Y_{0.35}Bi_{0.05}Eu_{0.6}Ca_3(GaO)_3(BO_3)_4$ under the irradiation of 273 nm and (b) the normalized emission intensity of Eu^{3+} . S5 / S5