# **Supporting** Information

of the paper entitled

MOF-derived Porous Carbon Inlaid with MnO<sub>2</sub> Nanoparticles as Stable Aqueous Zn-ion Battery Cathodes

## **Experimental Section**

#### 1. Materials

Cobalt(II) nitrate hexahydrate (Co(NO<sub>3</sub>)<sub>2</sub>·6H<sub>2</sub>O, 99 %, National Medicine Co., Ltd.), 2-methylimidazole (C<sub>4</sub>H<sub>6</sub>N<sub>2</sub>, 99 %, National Medicine Co., Ltd.), Manganese sulfate (MnSO<sub>4</sub>, 99 %, National Medicine Co., Ltd.), Zinc sulfate (ZnSO<sub>4</sub>, 99 %, National Medicine Co., Ltd.), CH<sub>3</sub>OH and HCl in this experiment were acquired from Aladdin Ltd., Poly-(vinylidene fluoride) (PVDF) and carbon black were purchased from National Medicine Co., Ltd.. All of the reagents were of analytical purity and were used as received.

### 2. Preparation of CoMOF

4 mmol of cobalt nitrate and 20 mmol of 2-methylimidazole were dissolved in 100 mL of methanol, mixed rapidly and stirred vigorously for 30 s. After stirring, the mixture was left to stand at 25°C for 24 h. After standing, the mixture was washed by alternate filtration with methanol and deionised water and dried, and the purple powder was collected as CoMOF.

#### **3. Preparation of C-CoMOF**

Some of the CoMOF obtained in step 2 was calcined under Ar atmosphere at 2 °C/min to 100 °C for 1h and then continued to calcine at a rate of 5 °C min<sup>-1</sup> to 900 °C for 4h. The black powder collected above was crushed and dispersed in 1 M HCl, stirred and sonicated for 24h, then washed three times with deionised water and collected as C-CoMOF.

## 4. Preparation of C-CoMOF-MnO<sub>2</sub>

An appropriate amount of C-CoMOF homogeneous powder was dispersed into a 50% solution of manganese nitrate, stirred and sonicated for 24 h. After stirring, the black viscous gelatinous mixture was collected by filtration and calcined in air at 1 °C min<sup>-1</sup> to 150 °C for 2 h. After burning, the solid was ground and collected to obtain C-CoMOF-MnO<sub>x</sub> (which contains a small amount of cobalt metal monomers).

#### 5. Preparation of MnO<sub>2</sub>

A 50% solution of manganese nitrate is calcined directly in air at 1 °C min<sup>-1</sup> up to 150 °C for 2h, after which the solid is ground and collected homogeneously to obtain  $MnO_2$ .

## 6. Preparation of anode and electrolyte

High purity zinc flakes (99%) are first soaked in acetone for 15min and then dried by ultrasonic cleaning with alcohol for 10 minutes. The electrolyte was easily mixed with  $3 \text{ M} \text{ZnSO}_4 + 0.1 \text{ M} \text{MnSO}_4$ .

#### 7. Characterization of Materials

The crystal structure of the products are identified by X-ray diffraction (XRD) using a bruke/vertex 70 X-ray diffractometer with range of 5°-80°. The morphology and microstructure are observed by the field emission scanning electron microscope ( JEOL JEM-2100F) . Transmission electron microscope (TEM) and high resolution Transmission electron microscope (HRTEM) were performed on Titan G2 60-300. Valence states measurements were analysed with X-ray photoelectron spectroscopy (XPS, ESCALAB250Xi ) . And binding energies (BEs) of the elements were calibrated against the reference BE at 284.8 eV for the C 1s peak. FT-IR spectrums were performed on IRAffinity-1/SHIMADZU. Thermogravimetric analysis (TGA) was conducted under air atmosphere with a heating rate of 10 °C min<sup>-1</sup> on a MS coupled thermogravimetric analyser (TA Instruments Q600SDT).

## 8. Electrochemical Performance Characterization

The batteries were assembled using the C-MnO<sub>2</sub> electrode as the cathode, organic glass fiber as the separator and Zn foil (thickness: 0.1mm, diameter: 15mm) as the anode in CR 2016 coin cells. 3 M ZnSO<sub>4</sub> + 0.1 M MnSO<sub>4</sub> aqueous solution was used as the electrolytes. The working electrode was prepared by mixing carbon coated C-MnO2 (70 wt%), conductive carbon (Super-P, 20 wt%), and polyvinylidene flfluoride (PVDF, 10 wt%), using N-methyl-2-pyrrolidone as solvent. The obtained slurry was cast onto stainless steel wire mesh (sswm) and dried in a vacuum oven at 80°C for 12 h. Cyclic voltammetry (CV) was carried out using CHI 660E electrochemical work station. Galvanostatic charge/discharge (GCD) tests were performed in the potential range of 0.8 to 1.8 V. The galvanostatic intermittent titration technique (GITT) was applied to analyze the reaction and diffusion kinetics at a current density of 100 mA g<sup>-1</sup> and a charge/discharge time and interval of 10 min for each step.



Figure S1 The thermogravimetric curve of Co-MOF



Figure S2 XPS survey spectra of C-MnO<sub>2</sub>



Figure S3 Pore size distribution of C-MnO<sub>2</sub>

| Cathode        | C-CoMOF | C-MnO <sub>2</sub> | MnO <sub>2</sub> |
|----------------|---------|--------------------|------------------|
| Surface area   | 502     | 126                | 0.4              |
| $(m^2 g^{-1})$ | 302     | 130                | 0.4              |

 Table S1
 Specific surface area of different electrodes



Figure S4 GITT curve of MnO<sub>2</sub>

| Cathode           | C-MnO <sub>2</sub> |    |     | <br>M=0           |
|-------------------|--------------------|----|-----|-------------------|
| Region            | Ι                  | П  | Ш   | MIIO <sub>2</sub> |
| IR drop / mV      | 25                 | 90 | 40  | 50                |
| $\Delta E_t / mV$ | 33                 | 0  | 230 | 56                |
| Total             | 58                 | 90 | 270 | 106               |

 Table S2
 Overpotential of ohmic impedance and charge transfer impedance & ion diffusion

| Cathode               | C-M      | InO <sub>2</sub> | Mn       | O <sub>2</sub> |
|-----------------------|----------|------------------|----------|----------------|
| Scan rate             | Angle    | Width            | Angle    | Width          |
| (mV s <sup>-1</sup> ) | (Peak 1) | (Peak 4)         | (Peak 1) | (Peak 4)       |
| 0.2                   | 43 °     | 210 mV           | 34 °     | 150 mV         |
| 0.4                   | 50 °     | 189 mV           | 36 °     | 152 mV         |
| 0.8                   | >90 °    | 175 mV           | 50 °     | 134 mV         |

Table S3 Passivation and broadening of peaks at different scanning rates for C-MnO\_2 and MnO\_2



Figure S5 Current of GITT at 1st discharge (MnO<sub>2</sub>)



Figure S6 Current of GITT at 1st discharge (C-MnO<sub>2</sub>)



Figure S7 Schematic diagram of the preparation of C-MnO<sub>2</sub>



Figure S8 CV curves of MnO<sub>2</sub> at different scanning rates.



Figure S9 Corresponding log(i) vs. log(v) curves and b values.



Figure S10 Capacitance contribution (electrical double layer capacitance + pseudocapacitance) at

different at different scan rates



Figure S11 Ratio of capacitance contribution at 0.4 mV s<sup>-1</sup>.

| Cathodes                         | Electrolyte                                             | Specific capacity<br>(mAh g <sup>-1</sup> ) | Capacity retention<br>(%)                             | Ref.    |  |
|----------------------------------|---------------------------------------------------------|---------------------------------------------|-------------------------------------------------------|---------|--|
| ZnMn <sub>2</sub> O <sub>4</sub> | $1 M ZnSO_4 + 0.05$                                     | 106.5 (0.1 A g <sup>-1</sup> )              | 84 %                                                  | [38]    |  |
|                                  | M MnSO <sub>4</sub>                                     | 6)                                          | $(300 \text{ cycles}, 0.1 \text{ A g}^{-1})$          |         |  |
| Na <sub>0.95</sub> MnO           | 0.5 M                                                   | 60 (0.05 A g <sup>-1</sup> )                | 92 %                                                  | [39]    |  |
|                                  | $Zn(CH_3COO)_2 + 0.5$                                   |                                             | $(2000 \text{ cycles } 0.2 \text{ A } \text{g}^{-1})$ |         |  |
| 2                                | M CH <sub>3</sub> COONa                                 |                                             | (2000 eyeles, 0.2 mg)                                 |         |  |
| δ-MnO <sub>2</sub>               | 1 M ZnSO <sub>4</sub>                                   | 252 (0.08 A g <sup>-1</sup> )               | 44 %                                                  | [40]    |  |
|                                  |                                                         |                                             | (100 cycles, 0.08 A g <sup>-1</sup> )                 |         |  |
| β-MnO <sub>2</sub>               | 1 M ZnSO <sub>4</sub>                                   | 180 (0.2 A g <sup>-1</sup> )                | 75 %                                                  | 5 4 4 3 |  |
|                                  |                                                         |                                             | (200 cycles, 0.2 A g <sup>-1</sup> )                  | [41]    |  |
| β-MnO <sub>2</sub>               | 3 M Zn(CF <sub>3</sub> SO <sub>3</sub> ) <sub>2</sub> + | 225 (0.2 A g <sup>-1</sup> )                | 94 %                                                  | [42]    |  |
|                                  | 0.1 M Mn(CF <sub>3</sub> SO <sub>3</sub> ) <sub>2</sub> |                                             | (2000 cycles, 2 A g <sup>-1</sup> )                   |         |  |
| This work                        | $2 M ZnSO_4 + 0.1 M$                                    |                                             | 91 %                                                  | ,       |  |
| ε-MnO <sub>2</sub>               | MnSO <sub>4</sub>                                       | 234 (0.2 A g <sup>-1</sup> )                | (1000 cycles, 1 A g <sup>-1</sup> )                   | /       |  |

Table S4 Electrochemical performances of manganese-based cathode materials of AZIBs