Modified Pyridine-Triazole and 2,2'-Bipyrimidine Ligands Generating Robust Titanium Complexes Constructed Around a TiO $\mathbf{4}_{\mathbf{N}} \mathbf{N}_{\mathbf{C o r e}} \dagger$

L. Barloy, ${ }^{\text {a }}$ B. Heinrich, ${ }^{\text {b }}$ M. Scarpi-Luttenauer, ${ }^{\text {a }}$ L. Douce, ${ }^{\text {b }}$ M. Henry, ${ }^{\text {a }}$ G. Khalil, ${ }^{\text {a }}$ D. Klein, ${ }^{\text {a }}$ N. Kyritsakas ${ }^{\text {a }}$ and
P. Mobian*a
a. Université de Strasbourg, CNRS, CMC UMR 7140, F-67000 Strasbourg, France
${ }^{\text {b. Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504, CNRS-Université de Strasbourg, F-67034 Strasbourg, France }}$

Supporting Information

Fig. S1 Additional POM textures of ligand 3b in mesophases $\mathrm{Col}_{\text {hex } 2}$ at $140^{\circ} \mathrm{C}$ (top) and $\mathrm{Col}_{\text {hex } 1}$ at $100^{\circ} \mathrm{C}$ (bottom), for different crossed polarizers directions (purple cross). On crossing $\mathrm{Col}_{\text {hex2 }}-\mathrm{Col}_{\text {hex }}$ phase transition, the homeotropic areas are reversibly replaced by schlieren areas, which further confirms the changeover from an orthogonal to a tilted structure.

Fig. S2 SWAXS patterns of ligand 3b in low- and high-temperature mesophases (black and red) that comply with $\mathrm{col}_{\text {hex }}$ structures of different lattice parameter, as indicated by the sharp reflections (10) and (11) with spacing ratio $\mathrm{d}_{10} / \mathrm{d}_{11}=\sqrt{ } 3$ and by the broad wide-angle scattering maximum $\mathrm{h}_{\mathrm{ch}}+\mathrm{h}_{\text {mes }} \approx 4.7 \AA$ from liquid-like lateral distances between molten chains and between mesogens. Therefore, lattice parameter is $a=(2 / \sqrt{ } 3) \times d_{10}=41.6 \AA$ at $100^{\circ} \mathrm{C}$ and $45.2 \AA$ at $145^{\circ} \mathrm{C}$; columnar cross-sectional surface is $\underline{S}_{\text {col }}=(\sqrt{3}) / 2 \times \mathrm{a}^{2}=1770 \AA^{2}$ at $100^{\circ} \mathrm{C}$ and $1500 \AA^{2}$ at $145^{\circ} \mathrm{C}$.

Fig. S3 SWAXS patterns of $\left[\mathrm{Ti}(\mathbf{3 b})(\mathbf{4})_{2}\right]$ in initial crystal 1 state (black), at $100^{\circ} \mathrm{C}$ in crystal 2 state (red), at $140^{\circ} \mathrm{C}$ in the isotropic liquid state (blue) and after cooling to $20^{\circ} \mathrm{C}$ in the glassy state (pink)

Fig. S4 Derived TGA thermogram of ligand $\mathbf{1 b}$ (green) and complex $\left[\mathrm{Ti}(\mathbf{1 b})(\mathbf{4})_{2}\right]$ (blue), showing that the analyzed solid sample of the complex contains no free ligand. The thermogravimetric analysis was performed on a Pyris 6 (Perkin Elmer) apparatus.

