Supplementary Information

Synthesis, structural characterization and magnetic properties study of Cr(III)/Ln(III), Ln=Gd and Dy complexes

Juan H. Mecchia Ortiz^[a], Daiana Cabrosi^[a], Carlos Cruz ^{[b],[c]}, Verónica Paredes-García^{[b],[c]} and Pablo Alborés^[a]*

- [a] Departamento de Química Inorgánica, Analítica y Química Física/ INQUIMAE (CONICET), Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina Fax: +5411 / 4576-3341 E-mail: albores@qi.fcen.uba.ar
- [b] Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Avenida República 275, Santiago de Chile, Chile.
- [c] Centro para el Desarrollo de la Nanociencia y Nanotecnología, CEDENNA, Santiago, Chile.

							2			
	1			2	2		3			
Gd1	05	2.346(8)	Dy1	027	2.38(1)	Y1	05	2.29(2)		
Gd1	04	2.425(9)	Dy1	021	2.370(9)	Y1	011	2.35(2)		
Gd1	011	2.40(1)	Dy1	O20	2.359(7)	Y1	O22	2.35(2)		
Gd1	O22	2.397(8)	Dy1	04	2.422(7)) Y1	O10	2.34(3)		
Gd1	O10	2.35(1)	Dy1	O10	2.315(9)) Y1	O4	2.34(2)		
Gd1	03	2.434(8)	Dy1	01	2.390(8)) Y1	O23	2.37(2)		
Gd1	O23	2.41(1)	Dy1	05	2.322(7)	Y1	02	2.37(2)		
Gd1	01	2.417(9)	Dy1	02	2.400(8)) Y1	05	2.29(2)		
Gd2	06	2.354(9)	Dy2	02	2.377(7)	Y2	014	2.37(3)		
Gd2	O4	2.413(8)	Dy2	01	2.402(8)	Y2	O24	2.39(3)		
Gd2	O14	2.43(1)	Dy2	03	2.394(7)	Y2	015	2.37(3)		
Gd2	01	2.42(1)	Dy2	013	2.386(9)	Y2	O2	2.38(2)		
Gd2	O2	2.416(8)	Dy2	07	2.323(8)	Y2	06	2.29(2)		
Gd2	07	2.35(1)	Dy2	06	2.333(8)	Y2	07	2.33(2)		
Gd2	015	2.40(1)	Dy2	012	2.406(8)	Y2	015	2.37(3)		
Gd2	O24	2.38(1)	Dy2	023	2.35(1)	Y2	03	2.37(2)		
Gd3	01	2.457(8)	Dy3	01	2.418(7)	Y3	01	2.40(2)		
Gd3	03	2.415(8)	Dy3	04	2.386(8)	Y3	O4	2.38(2)		
Gd3	019	2.420(8)	Dy3	09	2.35(1)	Y3	09	2.35(3)		
Gd3	09	2.37(1)	Dy3	017	2.388(7)	Y3	019	2.38(2)		
Gd3	O26	2.40(1)	Dy3	025	2.35(1)	Y3	O26	2.35(3)		
Gd3	O2	2.432(9)	Dy3	016	2.388(8)	Y3	O18	2.36(2)		
Gd3	08	2.345(8)	Dy3	03	2.405(8)	Y3	03	2.38(2)		
Gd3	018	2.422(9)	Dy3	08	2.316(7)	Y3	08	2.30(2)		
Cr1	013	1.99(1)	Cr1	N1	2.09(1)	Cr1	N1	2.09(3)		
Cr1	04	1.942(9)	Cr1	O22	1.979(9)	Cr1	06	1.97(2)		
Cr1	05	1.96(1)	Cr1	05	1.956(8)	Cr1	05	1.97(3)		
Cr1	012	2.01(1)	Crl	02	1.937(7)	Cr1	013	2.01(2)		
Cr1	06	1.943(9)	Cr1	06	1.943(8)	Cr1	O2	1.95(2)		
Cr1	N1	2.09(1)	Cr1	011	1.976(8)	Cr1	012	1.98(2)		
Cr2	O2	1.951(9)	Cr2	O7	1.958(7)	Cr2	N2	2.11(3)		
Cr2	07	1.952(8)	Cr2	03	1.949(8)	Cr2	016	1.98(3)		
Cr2	08	1.95(1)	Cr2	08	1.953(9)	Cr2	O7	2.01(2)		
Cr2	017	1.988(9)	Cr2	015	1.984(8)	Cr2	O3	2.00(2)		
Cr2	016	2.00(1)	Cr2	O14	1.98(1)	Cr2	08	1.99(3)		
Cr2	N2	2.10(1)	Cr2	N2	2.08(1)	Cr2	O17	2.01(2)		
Cr3	03	1.95(1)	Cr3	O10	1.974(7)	Cr3	N3	2.04(4)		

Tables S1. Main bond distances (Å) and angles (°) of complexes 1-3.

Cr3	010	1.976(8)	Cr3	019	1.972(9)	Cr3	O21	1.98(2)
Cr3	O21	1.99(1)	Cr3	N3	2.10(2)	Cr3	O10	1.95(2)
Cr3	N3	2.10(2)	Cr3	018	1.979(7)	Cr3	O4	1.99(3)
Cr3	O20	1.969(8)	Cr3	09	1.964(8)	Cr3	09	1.95(2)
Cr3	09	1.955(9)	Cr3	04	1.93(1)	Cr3	O20	1.98(2)

Gd1	Cr1	3.353(2)	Dy1	Dy2	3.952(1)	Y1	Cr3	3.315(7)
Gd1	Gd3	4.0160(7)	Dy1	Dy3	3.966(1)	Y1	Cr1	3.322(5)
Gd1	Cr3	3.359(2)	Dy1	Cr1	3.327(2)	Y2	Y1	3.937(4)
Gd2	Cr2	3.351(2)	Dy1	Cr3	3.326(2)	Y2	Y3	3.983(4)
Gd2	Gd1	3.9993(7)	Dy2	Dy3	3.997(1)	Y2	Cr2	3.312(6)
Gd2	Cr1	3.372(2)	Dy2	Cr1	3.345(2)	Y2	Cr1	3.327(6)
Gd3	Cr3	3.367(2)	Dy2	Cr2	3.321(2)	Y3	Y1	3.943(3)
Gd3	Gd2	4.0451(7)	Dy3	Cr2	3.325(2)	Y3	Cr3	3.332(6)
Gd3	Cr2	3.350(2)	Dy3	Cr3	3.341(2)	Y3	Cr2	3.313(5)

		1				2		3			
013	Cr1	012	87.6(4)	N1	Cr1	O22	94.3(4)	N1	Cr1	06	85(1)
N1	Cr1	012	94.4(5)	05	Cr1	O22	90.1(4)	N1	Cr1	013	94(1)
05	Cr1	012	90.2(4)	O2	Cr1	O22	96.0(4)	O2	Cr1	06	85.9(9)
O4	Cr1	012	95.0(4)	011	Cr1	O22	87.8(4)	O5	Cr1	06	92(1)
013	Cr1	06	90.0(4)	011	Cr1	06	90.0(4)	013	Cr1	O12	88(1)
O4	Cr1	06	86.4(4)	O2	Cr1	06	86.0(3)	N1	Cr1	O12	94(1)
N1	Cr1	06	84.6(5)	05	Cr1	06	92.0(4)	O5	Cr1	O12	90(1)
05	Cr1	06	92.1(4)	N1	Cr1	06	84.1(4)	013	Cr1	06	90(1)
N2	Cr2	O7	84.8(4)	O10	Cr3	019	90.7(4)	O10	Cr3	O21	91(1)
N2	Cr2	016	94.0(4)	N3	Cr3	019	94.7(5)	N3	Cr3	O21	95(1)
N2	Cr2	017	93.9(4)	018	Cr3	019	87.9(4)	O20	Cr3	O21	88(1)
N2	Cr2	08	84.3(4)	04	Cr3	019	94.7(4)	O4	Cr3	O21	95(1)
017	Cr2	O2	94.5(4)	010	Cr3	09	91.2(4)	O10	Cr3	09	91(1)
016	Cr2	O2	94.3(4)	O4	Cr3	09	87.0(4)	O4	Cr3	09	87.2(9)
07	Cr2	02	87.2(4)	018	Cr3	09	90.1(4)	O20	Cr3	09	90(1)
08	Cr2	O2	87.8(4)	N3	Cr3	09	83.9(5)	N3	Cr3	09	83(1)
O10	Cr3	O21	90.7(4)	O3	Cr2	014	94.6(3)	08	Cr2	017	89(1)
03	Cr3	O21	94.8(4)	015	Cr2	014	86.3(4)	N2	Cr2	O17	97(1)
N3	Cr3	O21	94.6(5)	N2	Cr2	014	94.7(4)	O3	Cr2	O17	93.3(9)
O20	Cr3	O21	87.5(4)	07	Cr2	014	91.1(3)	016	Cr2	017	88(1)
O3	Cr3	09	87.2(4)	O3	Cr2	08	87.5(3)	O7	Cr2	O3	87.7(9)
O20	Cr3	09	90.3(4)	07	Cr2	08	92.4(3)	O7	Cr2	016	89(1)
N3	Cr3	09	83.8(5)	N2	Cr2	08	83.7(4)	07	Cr2	N2	82(1)
O10	Cr3	09	91.4(4)	015	Cr2	08	90.2(4)	08	Cr2	07	94(1)

 Table S2. Ab-initio (MOLCAS-SINGLE_ANISO) computed single ion parameters of Cr(III) sites

 in complex 2.

	Cr(1)	Cr(2)	Cr(3)
$g\left(g_{x}, g_{y}, g_{z}\right)$	1.969, 1.967, 1.964	1.969, 1.968, 1.964	1.969, 1.967, 1.964
D / cm^{-1}	-0.29	-0.35	-0.29
<i>E/D</i> /	0.157	0.07	0.09

 Table S3. Ab-initio (MOLCAS-SINGLE_ANISO) computed single ion energies and g-tensors of

 low lying energy KDs of Dy(III) sites in complex 2.

	Dy (1)			Dy (2)		Dy(3)			
energy /cm ⁻¹	g tensor g _x , g _y , g _z	comp. / % (m _J)	energy /cm ⁻¹	g tensor g _{xy} g _y , g _z	comp. / % (m _J)	energy /cm ⁻¹	g tensor g _{xy} g _y , g _z	comp. / % (<i>m</i> _J)	
0.00	0.94, 1.76, 14.5	41% (13/2)	0.00	0.05, 0.06, 19.33	90% (15/2)	0.00	0.05, 0.09, 19.23	88% (15/2)	
20.83 20.83	1.17, 3.22, 10.73	29% (11/2)	79.53 79.53	0.65, 0.90, 15.63	66% (13/2)	72.06 72.06	0.26, 0.35, 16.32	73% (13/2)	
46.05 46.05	1.95, 5.14, 10.23	44% (9/2)	123.75 123.75	3.46, 5.70, 9.01	35% (11/2)	119.23 119.23	1.59, 3.14, 13.47	30% (9/2)	
60.23 60.23	0.17, 3.32, 11.73	22% (11/2)	146.07 146.07	0.75, 3.11, 12.34	30% (5/2)	141.23 141.23	0.85, 3.27, 13.10	28% (3/2)	
67.98 67.98	1.70, 4.55, 10.86	32% (5/2)	156.16 156.16	2.69, 3.47, 11.22	29% (1/2)	162.16 162.16	3.31, 5.79, 10.50	30% (7/2)	
92.18 92.18	2.24, 3.32, 13.35	34% (3/2)	170.65 170.65	1.36, 2.14, 13.02	36% (3/2)	188.91 188.91	0.14, 0.90, 17.18	55% (1/2)	
118.41 118.41	0.38, 0.92, 18.47	52% (1/2)	191.81 191.81	0.78, 3.53, 15.95	31% (7/2)	207.44 207.44	0.28, 1.73, 16.19	39% (5/2)	
378.27 378.27	0.00, 0.00, 19.96	58% (15/2)	465.52 465.52	0.00, 0.00, 19.95	25% (9/2)	473.32 473.32	0.00, 0.00, 19.93	27% (9/2)	

Table S4. CHELPG-DFT computed charges of Dy(III) coordinate oxygen atoms and Dy-O

	Dy1				Dy2			Dy3			
	charge	%	Dy-O / Å		charge	%	Dy-O / Å		charge	%	Dy-O / Å
μ-OH (O1)	-1.438	22	2.390(8)	μ-OH (O1)	-1.438	23	2.402(8)	μ-OH (01)	-1.438	23	2.418(7)
aqua (O27)	-0.964	15	2.38(1)	μ-piv (O23)	-0.853	13	2.35(1)	μ-OH (O4)	-0.823	13	2.386(8)
μ-OH (O2)	-0.829	13	2.400(8)	μ-OH (O2)	-0.829	13	2.377(7)	μ-piv (O25)	-0.787	12	2.35(1)
μ-OH (O4)	-0.823	13	2.422(7)	tea (O7)	-0.778	12	2.323(8)	µ2-piv (O16)	-0.667	10	2.388(8)
tea (O10)	-0.703	11	2.315(9)	tea (O6)	-0.754	12	2.333(8)	μ ₂ -piv (O17)	-0.659	10	2.388(7)
μ ₂ -piv (O21)	-0.693	11	2.370(9)	<i>μ</i> ₂ -piv (O13)	-0.734	12	2.386(9)	tea (O8)	-0.655	10	2.316(7)
μ ₂ -piv (O20)	-0.669	10	2.359(7)	<i>μ</i> ₂ -piv (O12)	-0.686	11	2.406(8)	μ-OH (O3)	-0.555	9	2.405(8)
tea (O5)	-0.661	10	2.322(7)	μ-OH (O3)	-0.555	9	2.394(7)	tea (O9)	-0.536	8	2.35(1)
Total	-6.627				-6.120				-6.780		

bond distances in complex **2**.

Table S5. Matrix main values (after diagonalization) of projected (onto effective Dy(III) s=1/2ground KD) exchange and dipolar magnetic interactions as arising fromMOLCAS/POLY_ANISO based experimental data fitting.

	Dy1-Dy2	Dy1- Dy3	Dy2-Dy3	Cr1-Dy2	Cr1-Dy1	Cr2-Dy2	Cr2-Dy3	Cr3-Dy3	Cr3-Dy1
J_{exc} / cm ⁻¹									
x	-0.058	-0.024	0.366	1.428	-2.087	2.355	1.299	-1.486	0.816
У	0.017	0.001	0.000	-0.342	0.020	-2.014	-0.015	-0.011	0.290
z	0.000	0.024	-0.129	0.000	0.520	0.013	-2.916	2.534	-1.742
isotropic contribution	-0.014	0.001	0.079	0.362	-0.516	0.118	-0.544	0.346	-0.212
$J_{ m dip}$ / cm ⁻¹									
x	0.377	0.406	-0.900	0.017	0.061	-0.101	0.031	-0.053	0.061
у	-0.303	0.001	0.000	-0.018	-0.028	0.061	0.000	0.062	0.010
z	0.000	-0.200	0.318	0.000	0.001	0.000	-0.087	0.001	-0.058
isotropic contribution	0.025	0.069	-0.194	0.000	0.012	-0.013	-0.019	0.003	0.004
J _{total} / cm ⁻¹ isotropic contribution	0.070	-0.115	0.362	-0.504	0.105	-0.563	0.349	-0.208	0.000

	T	Xs1	X T1	XS2	X Т2	α_1	$lpha_2$	$ au_1$	$ au_2$
	/ K	/cm ³ mol ⁻¹			/ s	/ s			
0 Oe	2	1.29	3.82	1.81	10.26	0.19	0.23	7.43E-04	4.74E-05
	2.2	1.29	3.20	1.54	10.20	0.17	0.26	3.80E-04	2.32E-05
	2.3	1.13	2.47	1.40	10.20	0.13	0.28	1.94E-04	1.14E-05
	2.5	1.13	1.95	0.01	10.05	0.06	0.35	8.45E-05	4.25E-06
	2.7	1.13	1.77	0.01	9.54	0.00	0.32	4.76E-05	2.24E-06
	3	1.13	1.67	0.01	9.04	0.02	0.29	2.72E-05	1.23E-06
	3.2	1.13	1.58	0.01	8.53	0.07	0.20	1.89E-05	8.50E-07
	3.4	1.05	1.55	0.00	8.03	0.00	0.23	8.37E-06	3.29E-07
1500 Oe	2.0	1.09	3.48	5.08	10.03	0.28	0.18	7.58E-04	4.11E-05
	2.2	0.90	3.16	5.08	10.27	0.30	0.20	3.29E-04	1.96E-05
	2.3	0.55	2.84	5.08	10.40	0.33	0.22	1.22E-04	8.61E-06
	2.5	0.55	2.86	4.25	10.08	0.31	0.23	4.70E-05	3.20E-06
	2.7	0.14	3.45	4.19	9.23	0.30	0.00	1.59E-05	1.39E-06
	3.0	0.14	2.86	3.32	9.49	0.24	0.00	9.74E-06	6.48E-07
	3.2	0.00	2.88	3.31	9.17	0.23	0.00	4.28E-06	2.63E-07
3000 Oe	2.0	0.43	1.26	0.23	2.89	0.23	0.24	6.86E-04	2.88E-05
	2.2	0.39	1.51	0.19	2.92	0.36	0.23	2.93E-04	1.36E-05
	2.3	0.37	1.25	0.19	3.28	0.27	0.23	1.67E-04	7.54E-06
	2.5	0.30	1.71	0.19	2.96	0.35	0.15	4.58E-05	3.42E-06
	2.7	0.00	2.08	0.00	2.65	0.34	0.00	1.22E-05	1.36E-06
	3.0	0.00	1.73	0.00	3.02	0.30	0.00	8.31E-06	8.28E-07

Table S6. Fitting parameters of AC magnetic data frequency dependence under variable temperature and variable DC magnetic field (2 K), through a generalized Debye model.

<i>H</i> /	X S1	X т1	X S2	Х Т2	ş	č	$ au_1$	$ au_2$
Oe	/cm ³ mol ⁻¹	a_1	a_2	/ s	/ s			
0	0.00	3.44	4.74	11.69	0.17	0.23	8.39E-04	5.43E-05
200	0.00	3.44	4.71	11.50	0.18	0.22	7.93E-04	5.67E-05
400	0.08	3.44	4.71	11.28	0.15	0.20	9.39E-04	6.18E-05
600	0.08	3.44	4.71	10.80	0.18	0.19	8.79E-04	6.19E-05
800	0.12	3.44	4.71	10.30	0.17	0.17	8.37E-04	5.92E-05
1000	0.10	3.44	4.71	10.09	0.18	0.18	1.05E-03	5.83E-05
1200	0.13	2.90	4.69	9.71	0.14	0.18	8.56E-04	5.40E-05
1400	0.12	2.90	4.69	9.27	0.19	0.19	9.31E-04	5.01E-05
1600	0.14	2.50	4.67	8.84	0.18	0.19	7.66E-04	4.57E-05
1800	0.14	2.50	4.67	8.44	0.22	0.20	8.16E-04	4.23E-05
2000	0.21	2.13	4.62	8.11	0.18	0.20	7.13E-04	4.01E-05

Table S7. DFT computed high spin (HS) and broken symmetry (BS) states spin density and energy values of complexes **1-3**. Spin densities in bold type shows the sites where spin was flipped.

1 Gd ₃ Cr ₃										
			spin den	sity			energy			
	Gd1	Gd2	Gd3	Cr1	Cr2	Cr3	/hartrees			
HS	7.030636	7.019895	7.022084	3.103535	3.103966	3.104018	-42171.26435364			
BS1	7.025827	7.029480	7.018649	-3.100190	3.103821	3.103884	-42171.26461822			
BS2	7.027005	7.024539	7.022595	3.103345	-3.101652	3.103895	-42171.26463101			
BS3	7.033495	7.016355	7.032389	3.103685	3.103691	-3.099802	-42171.26463770			
BS4	-7.021467	7.020622	7.021698	3.101442	3.104122	3.101727	-42171.26465029			
BS5	7.028550	-7.030868	7.021890	3.102295	3.102384	3.104133	-42171.26460572			
BS6	7.029108	7.019447	-7.028892	3.103547	3.103483	3.102225	-42171.26462936			
BS7	7.022198	7.034130	7.019156	-3.100373	-3.101794	3.103761	-42171.26489414			
BS8	7.029871	7.020996	7.032903	3.103496	-3.101919	-3.099923	-42171.26491406			
BS9	7.028697	7.025938	7.028949	-3.100035	3.103548	-3.099930	-42171.26490169			
BS10	-7.023550	-7.030139	7.021505	3.100205	3.102541	3.101843	-42171.26490073			
BS11	7.027025	-7.031317	-7.029081	3.102309	3.101903	3.102339	-42171.26488297			

BS12	-7.022988	7.020177	-7.029279	3.101455	3.103641	3.099935	-42171.26492424
				2 Dy ₃ Cr ₃			-
			spin den	sity			energy
	Dy1	Dy2	Dy3	Cr1	Cr2	Cr3	/hartrees
HS	5.012296	5.008149	5.008876	3.096606	3.100598	3.102621	-44860.53125569
BS1	5.011670	5.008145	5.004826	-3.098220	3.100359	3.102516	-44860.53133291
BS2	5.008482	5.009443	5.009557	3.096468	-3.101294	3.102492	-44860.53138059
BS3	5.015293	5.003634	5.016460	3.096752	3.100346	-3.101914	-44860.53143496
BS4	-5.006657	5.006200	5.009662	3.097846	3.100599	3.102276	-44860.53139673
BS5	5.011540	5.011540 -4.997276		3.096919	3.101236	3.102520	-44860.53138684
BS6	5.008869	5.002439	-5.010655	3.096643	3.101135	3.102591	-44860.53135976
BS7	-5.007282	5.006189	5.005611	-3.096971	3.100360	3.102177	-44860.53139249
BS8	5.007723	-4.995979	5.006337	3.096787	-3.100651	3.102391	-44860.53131721
BS9	5.011863	4.997927	-5.003073	3.096790	3.100889	-3.101944	-44860.53137956
				3 Y ₃ Cr ₃			
			spin den	sity			energy
	Cr	1	Cr	2	C	r3	/hartrees
HS	3.110	680	3.130	028	3.11	3920	-7681.58091298
BS1	-3.110330		3.129907		3.113777		-7681.58091320
BS2	3.110513		-3.129396		3.113690		-7681.58091349
BS3	3.110	498	3.129516		-3.113547		-7681.58091317

Figure S1. Molecular planes containing all Gd and all Cr atoms running parallel (angle between planes *ca*. 1°) and shifted *ca*. 1 Å. Complex **1** is chosen as example of all isostructural complexes **1-3**. Hydrogen atoms as well as disordered moieties have been omitted to improve visualization. Colour code: C: grey; O: red; N: blue; Cr: green and Gd: violet.

Figure S2. Intra-molecular H-bonding network (involving one solvent water molecule, O28) in complex **1** structure. Complex **1** is chosen as example of all isostructural complexes **1-3**. Colour code: C: grey; O: red; N: blue; Cr: green and Gd: violet.

Figures S3. Polyhedral representation of Gd sites in complex **1**. Complex **1** is chosen as example of all isostructural complexes **1-3**. Hydrogen atoms as well as disordered moieties have been omitted to improve visualization. Colour code: C: grey; O: red; N: blue; Cr: green and Gd: violet.

Figures S4. Polyhedral representation of Cr sites in complex **1**. Complex **1** is chosen as example of all isostructural complexes **1-3**. Hydrogen atoms as well as disordered moieties have been omitted to improve visualization. Colour code: C: grey; O: red; N: blue; Cr: green and Gd: violet.

Figure S5. Spacefill representation of adjacent complex 1 molecules, showing the encapsulated solvent water molecules (O28). Complex 1 is chosen as example of all isostructural complexes 1-3. Hydrogen atoms as well as disordered moieties have been omitted to improve visualization. Colour code: C: grey; O: red; N: blue; Cr: green and Gd: violet.

Figure S6. Crystal packing of complex **1** view along unit cell directions: *a*, *b* and *c* axis from top to bottom respectively. Complex **1** is chosen as example of all isostructural complexes **1-3**. Hydrogen atoms have been omitted to improve visualization. Colour code: C: grey; O: red; N: blue; Cr: green and Gd: violet.

Figure S7. Shortest inter-molecular metal-metal distance and Ln[…]Ln distance. Complex **1** is chosen as example of all isostructural complexes **1-3**. Hydrogen atoms as well as disordered moieties have been omitted to improve visualization. Colour code: C: grey; O: red; N: blue; Cr: green and Gd: violet.

Figure S8. Reduced magnetization data plot of complex **3**. Open symbols: experimental data; Full lines: simulated data with model described in the text.

Figure S9. Reduced magnetization data plot of complex **1**. Open symbols: experimental data; Full lines: simulated data with model described in the text.

Figure S10. Local main magnetic moment quantization axis orientation at each Dy(III) site in complex **2**, as arising from MOLCAS/SINGLE_ANISO quantum computations.

FigureS11. Local magnetic moment orientations within low lying exchange states in complex **2** as arising from MOLCAS/POLY_ANISO computation.

FigureS12. AC magnetic susceptibility data of complex **2** at 2 K under DC applied magnetic field (0-3 kOe) and variable frequency (up to 10 kHz). Lines are only drawn as eye guideline.

Figures S13. χ '' (left) and χ ' (right) temperature dependence with frequencies up to 10 kHz at 0 Oe (top), 1500 Oe (middle) and 3000 Oe (bottom) applied DC magnetic fields for complex **2**. Open symbols: experimental data; Full lines: eye guidelines.

Figure S14. Cole-Cole plots of AC magnetic data for complex **2** at 0 Oe (top); 1500 Oe (middle) and 3000 Oe (bottom) DC magnetic field. Open symbols: experimental data; full lines: simulated data with generalized Debye model (see text).

Figures S15. Cole-Cole plots of AC magnetic data for complex **2** at 2K under DC magnetic fields between 0 and 2000 Oe. Open symbols: experimental data; full lines: simulated data with generalized Debye model (see text).

Figures S16. Infrared spectra of reported complexes 1-Gd (green), 2-Dy (blue) and 3-Y (red).

Figures S17. Thermogravimetric (TGA) data of reported complexes 1-3.

Figure S18. Powder *X*-ray diffractograms at room temperature of complexes **1-Gd** (red), **2-Dy** (blue) and **3-Y** (green) and simulated diffractogram from single crystal *X*-ray data (black).

Figure S19. χT vs. *T* AC data at 0 DC (bottom), 1500 Oe (middle) and 3000 Oe (top) external DC field of complex **2-Dy**.

Figure S20. Left: χT vs. *T* AC data at 0 DC (bottom), 1500 Oe (middle) and 3000 Oe (top) external DC field of complex **2-Dy**. Right: DC χT vs. *T* data below 4.5 K of complex **2** at 1000 Oe.