The "Silent CO": a new technique for calculating transition metal carbonyl force fields Electronic Supplementary Information

John A. Timney ${ }^{\mathrm{a},{ }^{*}}$ and James J. Turner ${ }^{\mathrm{b}, *}$
a $\quad 26$ Neasdon Crescent, North Shields NE30 2TP, UK
b School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK

* Email addresses: john.timney@icloud.com, james.turner@nottingham.ac.uk

The supplementary information is divided into five sections:
$\mathrm{Ni}(\mathrm{CO})_{4}$ - the model system

Tricarbonyls
$2.1 \quad C_{5} \mathrm{Fe}(\mathrm{CO})_{3}$ (diene) Complexes
$2.2 \quad f a c-R e(C O)_{3}(\mathrm{~N}-\mathrm{N})$ (ligand) Complexes
2.3 mer- $\mathrm{M}(\mathrm{CO})_{3}(\mathrm{~L})_{3}$ Complexes ($\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W}$)

Tetracarbonyls
$3.1 \quad$ cis-M(CO) $)_{4}(\mathrm{~L})_{2}$ Complexes
3.1.1 The b_{2} method
3.1.2 The b_{1} method
$3.2 \quad C_{3 v}$ and $C_{2 v} \mathrm{Fe}(\mathrm{CO})_{4}(\mathrm{~L})$ Complexes
3.2.1 $\quad C_{3 v}$ Symmetry where L is axial
3.2.2 $\quad C_{2 v}$ Symmetry where L is equatorial

Pentacarbonyls
$4.1 \quad \mathrm{C}_{4 \mathrm{v}} \mathrm{M}(\mathrm{CO})_{5}(\mathrm{~L})(\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W})$ and $\mathrm{Mn}(\mathrm{CO})_{5}(\mathrm{X})$ Complexes
4.1.1 $\mathrm{M}(\mathrm{CO})_{5}(\mathrm{~L})$ Complexes $(\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W})$
4.1.2 $\mathrm{Mn}(\mathrm{CO})_{5}(\mathrm{X})$ Complexes

Force Constant Calculations for $\mathrm{Fe}(\mathrm{CO})_{4}\left(\mathrm{~N}_{2}\right)$

$1 \quad \mathrm{Ni}(\mathrm{CO})_{4}$ - the model system

$\mathrm{Ni}(\mathrm{CO})_{3}(\mathrm{~L})$ data used to calculate $\mathrm{v}\left(a_{1}\right)$ for $\mathrm{Ni}(\mathrm{CO})_{4}$.

Table S1: $\mathrm{Ni}(\mathrm{CO})_{3} \mathrm{~L}$ molecules used to calculate an EFFF for $\mathrm{Ni}(\mathrm{CO})_{4}$

Molecule	$v\left(a_{1}\right)$	$v(e)$	$K\left(a_{1}\right)$	$K(e)$	Ref.
$\mathrm{Ni}(\mathrm{CO})_{3}(\mathrm{PF} 3)^{\mathrm{Ni}(\mathrm{CO})_{3}\left(\mathrm{PCl}_{3}\right)}$	2111	2049	1800	1696	P. S. Braterman, "Metal Carbonyl Spectra"
$\mathrm{Ni}(\mathrm{CO})_{3}\left(\mathrm{POMe}_{3}\right)$	2103	2044	1786	1688	Table 7.14 (p212) and references therein
$\mathrm{Ni}(\mathrm{CO})_{3}\left(\mathrm{POBu}_{3}\right)$	2082	2010	1751	1632	
$\mathrm{Ni}(\mathrm{CO})_{3}\left(\mathrm{P}_{\left.\left(p-\mathrm{p}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}\right)_{3}\right)}\right.$	2077	2004	1743	1622	
$\mathrm{Ni}(\mathrm{CO})_{3}\left(\mathrm{PMe}_{3}\right)$	2066	1987	1724	1595	
$\mathrm{Ni}(\mathrm{CO})_{3}\left(\mathrm{SbEt}_{3}\right)$	2069	1994	1729	1606	
$\mathrm{Ni}(\mathrm{CO})_{3}\left(\mathrm{SbPh}_{3}\right)$	2067	1996	1726	1609	
$\mathrm{Ni}(\mathrm{CO})_{3}\left(\mathrm{BiEt}_{3}\right)$	2074	2005	1737	1624	

$$
K\left(\underline{a}_{1}\right)=0.7477 \times K(e)+528.17
$$

$$
\text { (9 data points, } \mathrm{R}^{2}=0.9811 \text {) }
$$

2 Tricarbonyls

2.1 $\quad \mathrm{C}_{5} \mathrm{Fe}(\mathrm{CO})_{3}$ (diene) complexes

As is explained in the main text, $\mathrm{Fe}(\mathrm{CO})_{2}$ (diene) (L) complexes are used to calculate EFFFs for $\mathrm{Fe}(\mathrm{CO})_{3}$ (diene) species

Table S2: $\mathrm{Fe}(\mathrm{CO})_{2}$ (diene)(L) (and diene-like) molecules used to calculate EFFFs for $\mathrm{Fe}(\mathrm{CO})_{3}$ (diene)

Molecule	$v\left(a^{\prime}\right)$	$v\left(a^{\prime \prime}\right)$	$K\left(a^{\prime}\right)$	$K\left(a^{\prime \prime}\right)$	Ref.
$\mathrm{Fe}(\mathrm{CO})_{2}\left(\mathrm{C}_{7} \mathrm{H}_{5}\right)\left(\mathrm{PEt}_{3}\right)$	1978	1920	1581	1490	A. Reckziegel and M. Bigorgne, Je
$(\mathrm{CO})_{2}\left(\mathrm{C}_{7} \mathrm{H}_{8}\right)\left(\mathrm{PEt}_{3}\right)$	1969	1913	1566	1478	J. Organometal. Chem., 3 (1965) 341-354

$\mathrm{Fe}(\mathrm{CO})_{2}(\mathrm{E}-\mathrm{pentadiene})\left(\mathrm{P}(\mathrm{OMe})_{3}\right)$	1989	1931	1598	1506	
$\mathrm{Fe}(\mathrm{CO})_{2}\left(\right.$ methylsorbate)($\left.\mathrm{P}(\mathrm{OMe})_{3}\right)$	2003	1946	1621	1530)
$\mathrm{Fe}(\mathrm{CO})_{2}($ cyclobutadiene $)\left(\mathrm{P}(\mathrm{OMe})_{3}\right)$	1988	1932	1596	1508	
$\mathrm{Fe}(\mathrm{CO})_{2}(\mathrm{PhCHCHCOH})\left(\mathrm{PPh}_{3}\right)$	2000	1947	1616	1531	G. Cardaci and G. Concetti, J. Organometal. Chem., 90 (1974) 49-52
$\mathrm{Fe}(\mathrm{CO})_{2}(\mathrm{PhCHCHCOH})\left(\mathrm{AsPh}_{3}\right)$	2000	1951	1616	1538	
$\mathrm{Fe}(\mathrm{CO})_{2}\left(\mathrm{PhCHCHCOCH}_{3}\right)\left(\mathrm{PPh}_{3}\right)$	2002	1947	1619	1531	
$\mathrm{Fe}(\mathrm{CO})_{2}\left(\mathrm{PhCHCHCOCH}_{3}\right)\left(\mathrm{SbPh}_{3}\right)$	1997	1945	1611	1528	
$\mathrm{Fe}(\mathrm{CO})_{2}(\mathrm{PhCHCHCOPh})\left(\mathrm{PPh}_{3}\right)$	2000	1947	1616	1531	
$\mathrm{Fe}(\mathrm{CO})_{2}(\mathrm{PhCHCHCOPh})\left(\mathrm{AsPh}_{3}\right)$	2002	1947	1619	1531	
$\mathrm{Fe}(\mathrm{CO})_{2}(\mathrm{PhCHCHCOPh})\left(\mathrm{SbPh}_{3}\right)$	2000	1947	1616	1531	
$\mathrm{Fe}(\mathrm{CO})_{2}\left(\right.$ butadiene) $\left(\mathrm{PPh}_{3}\right)$	1973	1910	1572	1474	F. M. Chaudhari and P. L. Pauson, J. Organometal.Chem., 5 (1966) 73-78
$\mathrm{Fe}(\mathrm{CO})_{2}\left(\right.$ cyclohexadiene) $\left(\mathrm{PPh}_{3}\right)$	1960	1894	1552	1449	
$\mathrm{Fe}(\mathrm{CO})_{2}$ (cycloheptaadiene)(PPh_{3})	1965	1905	1560	1466	
$\mathrm{Fe}(\mathrm{CO})_{2}(\mathrm{cycloheptatriene})\left(\mathrm{PPh}_{3}\right)$	1973	1920	1572	1489	
$\mathrm{Fe}(\mathrm{CO})_{2}\left(\mathrm{C}_{4} \mathrm{Ph}_{4}\right)\left(\mathrm{PPh}_{3}\right)$	1955	1904	1544	1464	
$\mathrm{Fe}(\mathrm{CO})_{2}(\mathrm{bda})\left(\mathrm{PPh}_{3}\right)$	1999	1939	1614	1519	B. F. G. Johnson, J. Lewis, G. R. Stephenson and E. J. S. Vichi J. C. S. Dalton, 1978, 369-373
$\mathrm{Fe}(\mathrm{CO})_{2}(\mathrm{bda})\left(\mathrm{P}(\mathrm{OPh})_{3}\right)$	2015	1958	1640	1549	
$\mathrm{Fe}(\mathrm{CO})_{2}($ cyclohexadiene $)\left(\mathrm{PPh}_{3}\right)$	1981	1927	1585	1500	
$\mathrm{Fe}(\mathrm{CO})_{2}($ cyclohexadiene $)\left(\mathrm{P}(\mathrm{OPh})_{3}\right)$	2067	2021	1726	1650	
$\mathrm{Fe}(\mathrm{CO})_{2}(\mathrm{chd})\left(\mathrm{PPh}_{3}\right)$	1979	1925	1582	1497	
$\mathrm{Fe}(\mathrm{CO})_{2}(\mathrm{chd})\left(\mathrm{P}(\mathrm{OPh})_{3}\right)$	2065	2019	1722	1647	
$\mathrm{Fe}(\mathrm{CO})_{2}(\mathrm{MeO}-\mathrm{chd})\left(\mathrm{PPh}_{3}\right)$	1978	1924	1580	1495	
$\mathrm{Fe}(\mathrm{CO})_{2}(\mathrm{MeO}-\mathrm{chd})\left(\mathrm{P}(\mathrm{OPh})_{3}\right)$	2065	2018	1722	1645	
$\mathrm{Fe}(\mathrm{CO}) 2$ (acetylergosterol)(PPh3)	1974	1920	1574	1489	

$$
K\left(a^{\prime}\right)=0.9191 \times K\left(a^{\prime \prime}\right)+209.9
$$

(31 data points, $\mathrm{R}^{2}=0.9884$)

$2.2 \quad \mathrm{fac}-\mathrm{Re}(\mathrm{CO})_{3}(\mathrm{~N}-\mathrm{N})$ (ligand) complexes

As with the iron-diene dicarbonyls above, $f a c-\operatorname{Re}(\mathrm{CO})_{2}(\mathrm{~N}-\mathrm{N})(\mathrm{X})(\mathrm{L})$ and $\left[f a c-\mathrm{Re}(\mathrm{CO})_{2}(\mathrm{~N}-\mathrm{N})(\mathrm{L})\left(\mathrm{L}^{\prime}\right)\right]^{+}$are used to calculate EFFFs for fac-$\operatorname{Re}(\mathrm{CO})_{3}(\mathrm{~N}-\mathrm{N})(\mathrm{X})$ and $\left[f a c-\mathrm{Re}(\mathrm{CO})_{3}(\mathrm{~N}-\mathrm{N})(\mathrm{L})\right]^{+}$, given as Table S3.

Table S3: cis,trans-Re(CO) $\mathbf{2}_{2}(\mathrm{~N}-\mathrm{N})(\mathrm{L})(\mathrm{X})$ and $\left[\text { cis,trans- } \operatorname{Re}(\mathrm{CO})_{2}(\mathrm{~N}-\mathrm{N})(\mathrm{L})\left(\mathrm{L}^{\prime}\right)\right]^{+}$molecules used to calculate EFFFs for fac-Re(CO) $)_{3}(\mathrm{~N}-\mathrm{N})(\mathrm{X})$ and $\left[f a c-\operatorname{Re}(\mathrm{CO})_{3}(\mathrm{~N}-\mathrm{N})(\mathrm{L})\right]^{+}$

$\left[\operatorname{Re}(\mathrm{CO})_{2}\left(\mathrm{Ph}_{2} \mathrm{phen}\right)(\mathrm{dppm})\right]^{+}$	1949	1883	1432	1534	
$\left[\operatorname{Re}(\mathrm{CO})_{2}(\text { phen })(\mathrm{c}-\mathrm{dppene})\right]^{+}$	1959	1889	1441	1550	
$\left[\operatorname{Re}(\mathrm{CO})_{2}(\mathrm{phen})\left(\mathrm{P}(\mathrm{OPh})_{3}\right)_{2}\right]^{+}$	1984	1914	1480	1590	
$\left[\operatorname{Re}(\mathrm{CO})_{2}(\mathrm{phen})_{2}\right]^{+}$	1922	1853	1387	1492	
$\left[\operatorname{Re}(\mathrm{CO})_{2}(\mathrm{t} \text {-dppene })_{2}(\mathrm{bpy})\right]^{+}$	1942	1873	1417	1523	
$\mathrm{Re}(\mathrm{CO})_{2}(\mathrm{deeb})(\mathrm{Cl})\left(\mathrm{PMe}_{3}\right)$	1920	1848	1379	1489	D. K. Kurtz, K. R. Brereton, K. P. Rufft, H. M. Tang, G. A.
$\left[\operatorname{Re}(\mathrm{CO})_{2}(\mathrm{deeb})(\mathrm{MeCN})\left(\mathrm{PMe}_{3}\right)\right]^{+}$	1943	1873	1417	1525	N. Felton, A. J. M. Miller and J. L. Dempsey Inorg. Chem., 57 (2018) 5389-5399
$\left[\operatorname{Re}(\mathrm{CO})_{2}(\mathrm{bpy})\left(\mathrm{P}(\mathrm{OEt})_{3}\right)(\mathrm{MeCN})\right]^{+}$	1954	1878	1425	1542	K. Koike, J. Tanabe, S. Toyama, H. Tsubaki, K. Sakamoto,
$\left[\operatorname{Re}(\mathrm{CO})_{2}(\mathrm{bpy})\left(\mathrm{P}(\mathrm{OEt})_{3}\right)(\mathrm{py})\right]^{+}$	1945	1871	1414	1528	J. R. Westwell, F. P. A. Johnson, H. Hori, H Saitoh and O.
$\left[\operatorname{Re}(\mathrm{CO})_{2}(\mathrm{bpy})\left(\mathrm{P}(\mathrm{OEt})_{3}\right)\left(\mathrm{PPh}_{3}\right)\right]^{+}$	1948	1876	1422	1533	Inorg. Chem., 39 (2000) 2777-2783
$\left[\operatorname{Re}(\mathrm{CO})_{2}(\mathrm{bpy})\left(\mathrm{P}(\mathrm{OEt})_{3}\right)_{2}\right]^{+}$	1956	1881	1429	1545	
$\left[\operatorname{Re}(\mathrm{CO})_{2}(\mathrm{bpy})\left(\mathrm{P}(\mathrm{OEt})_{3}\right) \mathrm{Cl}\right]$	1936	1857	1393	1514	
$\left[\operatorname{Re}(\mathrm{CO})_{2}(\mathrm{bpy})\left(\mathrm{PPh}_{3}\right)(\mathrm{MeCN})\right]^{+}$	1944	1872	1416	1527	
$\left[\operatorname{Re}(\mathrm{CO})_{2}(\mathrm{bpy})\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}$	1938	1867	1408	1517	
$\left[\operatorname{Re}(\mathrm{CO})_{2}\left(\mathrm{Me}_{2} \mathrm{bpy}\right)\left(\mathrm{P}(\mathrm{OEt})_{3}\right)\left(\mathrm{PPh}_{3}\right)\right]^{+}$	1946	1873	1417	1530	
$\left[\operatorname{Re}(\mathrm{CO})_{2}\left(\mathrm{Me}_{2} \mathrm{bpy}\right)\left(\mathrm{P}(\mathrm{OEt})_{3}\right)\left(\mathrm{PPh}_{3}\right)\right]^{+}$	1944	1865	1405	1527	
$\left[\operatorname{Re}(\mathrm{CO})_{2}\left(\mathrm{Me}_{2} \mathrm{bpy}\right)\left(\mathrm{P}(\mathrm{OEt})_{3}\right)_{2}\right]^{+}$	1954	1879	1426	1542	
$\left[\operatorname{Re}(\mathrm{CO})_{2}\left(\left(\mathrm{CF}_{3}\right)_{2} \mathrm{bpy}\right)\left(\mathrm{P}(\mathrm{OEt})_{3}\right)_{2}\right]^{+}$	1963	1891	1444	1556	
$\begin{aligned} & {\left[\mathrm{Re}(\mathrm{CO})_{2}(\mathrm{bpy})\left(\mathrm{P}(\mathrm{OEt})_{3}\right)_{2}\right]^{+}} \\ & \left(\mathrm{Br} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \end{aligned}$	1956	1882	1431	1545	O. Ishitani, M. W. George, T. Ibusuki, F. P. A. Johnson, K. Koike, K. Nozaki, C. Pac, J. J. Turner and J. R. Westwell,
$\begin{aligned} & {\left[\mathrm{Re}(\mathrm{CO})_{2}(\mathrm{bpy})\left(\mathrm{P}(\mathrm{OEt})_{3}\right)_{2}\right]^{+}} \\ & \left(\mathrm{Br} / \mathrm{CH}_{3} \mathrm{CN}\right) \end{aligned}$	1956	1881	1429	1545	Inorg. Chem., 33 (1994) 4712-471
$\left[\operatorname{Re}(\mathrm{CO})_{2}(\mathrm{bpy})\left(\mathrm{P}(\mathrm{OEt})_{3}\right)_{2}\right]^{+}$ ($\mathrm{Br} / \mathrm{DMF}$)	1953	1879	1426	1541	
$\left[\operatorname{Re}(\mathrm{CO})_{2}(\mathrm{bpy})\left(\mathrm{P}(\mathrm{OEt})_{3}\right)_{2}\right]^{+}$ ($\left[\mathrm{BPh}_{4}\right]^{-} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$)	1957	1884	1434	1547	
$\left[\operatorname{Re}(\mathrm{CO})_{2}(\mathrm{bpy})\left(\mathrm{P}(\mathrm{OEt})_{3}\right)_{2}\right]^{+}$ ($\left[\mathrm{BPh}_{4}\right]^{-} / \mathrm{CH}_{3} \mathrm{CN}$)	1955	1881	1429	1544	

$\left[\operatorname{Re}(\mathrm{CO})_{2}(\mathrm{bpy})\left(\mathrm{P}(\mathrm{OEt})_{3}\right)_{2}\right]^{+}$ ([BPh $]^{-} / \mathrm{DMF}$)	1953	1879	1426	1541	
$\left[\operatorname{Re}(\mathrm{CO})_{2}(\mathrm{dmbpy})\left(\mathrm{P}(\mathrm{MeOPh})_{3}\right)_{2}\right]^{+}$	1902	1825	1345	1461	H. Tsubaki, A. Sekine, Y. Ohashi, K. Koike, H. Takeda and O.Ishitani J. Am. Chem. Soc., 127 (2005) 15544-15555
$\left[\mathrm{Re}(\mathrm{CO})_{2}(\mathrm{dmbpy})\left(\mathrm{P}(\mathrm{MeOPh})_{3}\right)_{2}\right]$	1930	1859	1396	1505	
$\left[\operatorname{Re}(\mathrm{CO})_{2}(\mathrm{dmbpy})\left(\mathrm{P}(\mathrm{MeOPh})\left(\mathrm{PPh}_{3}\right)\right]^{+}\right.$	1933	1861	1399	1509	
$\left[\operatorname{Re}(\mathrm{CO})_{2}(\mathrm{dmbpy})\left(\mathrm{PPh}_{3}\right)_{2}\right]$	1908	1830	1353	1470	
$\left[\operatorname{Re}(\mathrm{CO})_{2}(\mathrm{dmbpy})\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}$	1936	1865	1405	1514	
$\left[\operatorname{Re}(\mathrm{CO})_{2}(\mathrm{dmbpy})\left(\mathrm{P}(\mathrm{FPh})_{3}\left(\mathrm{PPh}_{3}\right)\right]^{+}\right.$	1937	1867	1408	1516	
$\left[\operatorname{Re}(\mathrm{CO})_{2}(\mathrm{dmbpy})\left(\mathrm{P}(\mathrm{FPh})_{3}\right)_{2}\right]$	1910	1834	1359	1474	
$\left[\operatorname{Re}(\mathrm{CO})_{2}(\mathrm{dmbpy})\left(\mathrm{P}(\mathrm{FPh})_{3}\right)_{2}\right]^{+}$	1939	1869	1411	1519	
$\left[\operatorname{Re}(\mathrm{CO})_{2}(\mathrm{dmbpy})\left(\mathrm{P}(\mathrm{ClPh})_{3}\right)_{2}\right]$	1912	1837	1363	1477	
$\left[\operatorname{Re}(\mathrm{CO})_{2}(\mathrm{dmbpy})\left(\mathrm{P}(\mathrm{ClPh})_{3}\right)_{2}\right]^{+}$	1942	1872	1416	1523	
$\left[\operatorname{Re}(\mathrm{CO})_{2}(\mathrm{dmpy})\left(\mathrm{P}(\mathrm{MeOPh})_{3}\left(\mathrm{P}(\mathrm{OPr})_{3}\right)\right]^{+}\right.$	1939	1865	1405	1519	
$\left[\operatorname{Re}(\mathrm{CO})_{2}(\mathrm{dmbpy})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{P}(\mathrm{OEt})_{3}\right)\right]$	1917	1840	1368	1484	
$\left[\operatorname{Re}(\mathrm{CO})_{2}(\mathrm{dmbpy})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{P}(\mathrm{OEt})_{3}\right)\right]^{+}$	1945	1872	1416	1528	
$\left[\operatorname{Re}(\mathrm{CO})_{2}(\mathrm{dmbpy})\left(\mathrm{P}(\mathrm{OPr})_{3}\right)_{2}\right]$	1919	1840	1368	1487	
$\left[\mathrm{Re}(\mathrm{CO})_{2}(\mathrm{dmbpy})\left(\mathrm{P}(\mathrm{OPr})_{3}\right)_{2}\right]^{+}$	1946	1871	1414	1530	
$\left.\left.\left[\operatorname{Re}(\mathrm{CO})_{2}(\mathrm{dmbpy})(\mathrm{POEt})_{3}\right)_{2}\right)\right]^{+}$	1953	1879	1426	1541	
$\left[\operatorname{Re}(\mathrm{CO})_{2}(\mathrm{dmbpy})\left(\mathrm{P}(\mathrm{OEt})_{3}\right)\left(\mathrm{P}(\mathrm{OMe})_{3}\right)\right]^{+}$	1956	1882	1431	1545	

$$
K\left(a^{\prime}\right)=0.9525 \times K\left(a^{\prime \prime}\right)+178.9
$$

(62 data points; $\mathrm{R}^{2}=0.9748$)

2.3 mer - $\mathrm{M}(\mathrm{CO})_{3} \mathrm{~L}_{3}$ complexes ($\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W}$)

For these species the ideal data would be obtained from trans $-\mathrm{M}(\mathrm{CO})_{2} \mathrm{~L}_{4}$ molecules, but unfortunately, such information is sparse, so it is necessary to proceed in a roundabout way. The EFFF constants for a range of $\mathrm{M}(\mathrm{CO})_{5} \mathrm{~L}$ have been obtained via isotopic substitution: $k_{a x}, k_{e q}, k_{a x, e q}, k_{e q, e q}^{c i s} k_{e q, e q}^{\text {trans }}$. Assuming that for a set of theoretical trans- $\mathrm{M}(\mathrm{CO})_{2} \mathrm{~L}_{4}$ molecules, we can use $k_{e q}$ and $k_{\text {eq,eq }}^{\text {trans }}$ calculation of these values

Table S4: $\mathrm{M}(\mathrm{CO})_{5} \mathrm{~L}$ molecules used to calculate the $\mathrm{K}\left(\mathrm{a}_{1}\right)$ and $\mathrm{K}\left(\mathrm{b}_{2}\right)$ values of the theoretical trans- $\mathrm{M}(C O)_{2} L_{4}$ species en route to mer- $\mathrm{M}(\mathrm{CO})_{3} \mathrm{~L}_{3}$ systems

Molecule	$K\left(a_{1}\right)$	$K\left(b_{1}\right)$	Ref.
$\mathrm{Mo}(\mathrm{CO})_{5}\left(\mathrm{PPh}_{3}\right)$	1655	1537	D. J. Darensbourg and M. A. Murphy, J. Am. Chem. Soc., 100 (1978) 463-468
$\mathrm{Cr}(\mathrm{CO})_{6}\left({ }^{13} \mathrm{C}^{18} \mathrm{OCH} 42 \mathrm{~K}\right)$	1699	1593	J. A. Timney PhD Thesis, Newcastle University 1980
$\mathrm{Cr}(\mathrm{CO})_{6}\left({ }^{13} \mathrm{COCH}_{4} 20 \mathrm{~K}\right)$	1696	1592	R. N. Perutz and J. J. Turner
$\mathrm{Cr}(\mathrm{CO})_{6}\left({ }^{13} \mathrm{CO} \mathrm{Ar} \mathrm{20K)}\right.$	1702	1598	
$\mathrm{Cr}(\mathrm{CO})_{6}\left({ }^{13} \mathrm{CO}\right.$ cyclohexane)	1695	1592	
$\mathrm{Cr}(\mathrm{CO}){ }_{6}\left({ }^{13} \mathrm{CO}\right.$ alkane)	1700	1592	
$\mathrm{Mo}(\mathrm{CO}){ }_{6}\left({ }^{13} \mathrm{COCH}_{4} 20 \mathrm{~K}\right)$	1700	1594	
W(CO) $)_{6}\left({ }^{13} \mathrm{COCH}_{4} 20 \mathrm{~K}\right)$	1693	1585	
$\mathrm{Cr}(\mathrm{CO})_{5}(\mathrm{CS})$	1724	1631	M. Poliakoff Inorg. Chem., 15 (1976) 2022-2031
$\mathrm{Cr}(\mathrm{CO})_{5}\left(\mathrm{NHC}_{5} \mathrm{H}_{10}\right)$	1642	1510	D. J. Darensbourg and M. A. Murphy, Inorg. Chem., 17 (1978) 884-888
$\mathrm{Cr}(\mathrm{CO})_{5}\left(\mathrm{H}_{2}\right)$	1689	1575	R. K. Upmacis, M. Poliakoff and J. J. Turner
$\mathrm{Mo}(\mathrm{CO})_{5}\left(\mathrm{H}_{2}\right)$	1694	1581	
$\mathrm{W}(\mathrm{CO})_{5}\left(\mathrm{H}_{2}\right)$	1684	1571	
$\mathrm{Cr}(\mathrm{CO})_{5}\left({ }^{13} \mathrm{COCH} 42 \mathrm{~K}\right)$	1674	1554	R. N. Perutz and J. J. Turner
$\mathrm{Cr}(\mathrm{CO})_{5}\left({ }^{13} \mathrm{CO} \mathrm{Ar} \mathrm{20K)}\right.$	1681	1561	Inorg. Chem., 14 (1975) 262-270
$\mathrm{Mo}(\mathrm{CO})_{5}\left({ }^{13} \mathrm{CO} \mathrm{CH}_{4} 2 \mathrm{OK}\right)$	1681	1563	
$\mathrm{W}(\mathrm{CO})_{5}\left({ }^{13} \mathrm{CO} \mathrm{CH} 42 \mathrm{CK}\right)$	1671	1547	
$\mathrm{Mo}(\mathrm{CO})_{5}\left(\mathrm{~N}_{2}\right) 1$	1692	1580	J. K. Burdett, A. J. Downs, G. P. Gaskill, M. A. Graham, J.
$\mathrm{Mo}(\mathrm{CO})_{5}\left(\mathrm{~N}_{2}\right) 2$	1687	1580	Inorg. Chem., 17 (1978) 523-532
$\mathrm{Mo}(\mathrm{CO})_{5}\left(\mathrm{~N}_{2}\right) 3$	1689	1581	The multiple values for $\mathrm{Mo}(\mathrm{CO})_{5}\left(\mathrm{~N}_{2}\right)$ arise from the
$\mathrm{Mo}(\mathrm{CO})_{5}\left(\mathrm{~N}_{2}\right) 4$	1691	1581	different ways the force constants were calculated.

$$
K(\underline{a})_{1}=0.6771 \times K\left(b_{2}\right)+620.5
$$

$$
\text { (21 data points, } R^{2}=0.9804 \text {) }
$$

3 Tetracarbonyls

3.1 cis- $\mathrm{M}(\mathrm{CO})_{4} \mathrm{~L}_{2}$ complexes ($\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W}$)

There are two approaches (the b_{2} method and the b_{1} method) to finding EFFF force constants for these molecules.
The secular equations for these molecules are:

$$
\begin{gathered}
a_{1}:\left|\begin{array}{cc}
k_{1}+k_{11}-K & 2 k_{12} \\
2 k_{12} & k_{2}-K
\end{array}\right|=0 \\
b_{1}: K\left(b_{1}\right)=k_{1}-k_{11} \\
b_{2}: K\left(b_{2}\right)=k_{2}-k_{22}
\end{gathered}
$$

We start with data for $K\left(a_{1}\right)$ and $K\left(b_{2}\right)$ for cis- $\mathrm{M}(\mathrm{CO})_{2}(\mathrm{~L})_{4}$ complexes $(\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W})$. (Table S5a). This is rather limited but we can also use the isotopic data for $\mathrm{M}(\mathrm{CO})_{5} \mathrm{~L}$ systems, as for the mer- $\mathrm{M}(\mathrm{CO})_{3} \mathrm{~L}_{3}$, but this time calculate the theoretical cis $-\mathrm{M}(\mathrm{CO})_{2} \mathrm{~L}_{4} \mathrm{~K}\left(a_{1}\right)$ and $K\left(b_{2}\right)$ data. These calculations are shown in Table S5b. In fact, there was no statistical difference between the results for the two approaches, and the 32 data points give an excellent straight-line plot

$$
\left.K\left(\underline{a}_{1}\right)=0.8507 \times K\left(b_{2}\right)+296.7 \quad \text { (32 data points, } R^{2}=0.9981\right)
$$

Table S5a: cis-M(CO) $\left.\mathbf{2}^{(L)}\right)_{4}(\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W})$ molecules used to calculate EFFFs for cis-M(CO) ${ }_{4}(\mathrm{~L})_{2}$ (using the \boldsymbol{b}_{2} mode)					
Molecule	$v\left(a_{1}\right)$	$v\left(b_{2}\right)$	$K\left(a_{1}\right)$	$K\left(b_{2}\right)$	Ref.
$\mathrm{Mo}(\mathrm{CO})_{2}\left(\mathrm{PF}_{3}\right)_{4}$	2048	2010	1694	1632	P. S. Braterman, "Metal Carbonyl Spectra" Table 7.13 (p206) and references therein
$\mathrm{Mo}(\mathrm{CO})_{2}\left(\mathrm{P}(\mathrm{OMe})_{3}\right)_{4}$	1909	1856	1472	1391	
$\mathrm{Cr}(\mathrm{CO})_{2}(\mathrm{phen})\left(\mathrm{P}(\mathrm{OEt})_{3}\right)_{2}$	1827	1743	1348	1227	
$\mathrm{Mo}(\mathrm{CO})_{2}($ phen $)\left(\mathrm{P}(\mathrm{OEt})_{3}\right)_{2}$	1872	1790	1416	1294	
$\mathrm{W}(\mathrm{CO})_{2}(\mathrm{phen})\left(\mathrm{P}(\mathrm{OEt})_{3}\right)_{2}$	1825	1740	1345	1223	
$\mathrm{Mo}(\mathrm{CO})_{2}(\mathrm{dppe})_{2}$	1850	1783	1382	1284	J. R. Sowa, J. B. Bonanno, V. Zanotti, and R. J. Angelici Inorg. Chem. 31 (1992) 1370-1375
$\mathrm{Mo}(\mathrm{CO})_{2}(\mathrm{dppp})_{2}$	1857	1790	1393	1294	
$\mathrm{Mo}(\mathrm{CO})_{2}(\text { arphos })_{2}$	1848	1778	1379	1277	
$\mathrm{Mo}(\mathrm{CO})_{2}(\mathrm{dmpe})_{2}$	1836	1766	1362	1260	
$\mathrm{W}(\mathrm{CO})_{2}(\mathrm{dppe})_{2}$	1851	1781	1384	1281	
$\mathrm{Mo}(\mathrm{CO})_{2}(\text { diars })_{2}$	1887	1828	1438	1350	

Table S5b: Hypothetical cis- $\mathrm{M}(\mathrm{CO})_{2}(\mathrm{~L})_{4}(\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W})$ molecules calculated from isotopic data used to calculate EFFFs for cis-M(CO) ${ }_{4}(\mathrm{~L})_{2}$ (using the b_{2} mode)

Molecule	$K\left(a_{1}\right)$	$K\left(b_{2}\right)$	Ref.
$\mathrm{Mo}(\mathrm{CO})_{5}\left(\mathrm{PPh}_{3}\right)$	1628	1564	D. J. Darensbourg and M. A. Murphy, J. Am. Chem. Soc., 100 (1978) 463-468
$\mathrm{Cr}(\mathrm{CO})_{6}\left({ }^{13} \mathrm{C}^{18} \mathrm{OCH}_{4} 20 \mathrm{~K}\right)$	1672	1619	J. A. Timney PhD Thesis, Newcastle University 1980
$\mathrm{Cr}(\mathrm{CO})_{6}\left({ }^{13} \mathrm{COCH}_{4} 20 \mathrm{~K}\right)$	1671	1618	R. N. Perutz and J. J. Turner
$\mathrm{Cr}(\mathrm{CO})_{6}\left({ }^{13} \mathrm{CO} \mathrm{Ar} \mathrm{20K)}\right.$	1676	1624	
$\mathrm{Cr}(\mathrm{CO})_{6}\left({ }^{13} \mathrm{CO}\right.$ cyclohexane)	1669	1617	
$\mathrm{Cr}(\mathrm{CO}){ }_{6}\left({ }^{13} \mathrm{CO}\right.$ alkane)	1672	1620	
$\mathrm{Mo}(\mathrm{CO}){ }_{6}\left({ }^{13} \mathrm{COCH}_{4} 20 \mathrm{~K}\right)$	1675	1619	
W(CO) $)_{6}\left({ }^{13} \mathrm{COCH}_{4} 20 \mathrm{~K}\right)$	1669	1609	
$\mathrm{Cr}(\mathrm{CO})_{5}(\mathrm{CS})$	1701	1654	M. Poliakoff Inorg. Chem., 15 (1976) 2022-2031
$\mathrm{Cr}(\mathrm{CO})_{5}\left(\mathrm{NHC}_{5} \mathrm{H}_{10}\right)$	1606	1546	D. J. Darensbourg and M. A. Murphy, Inorg. Chem., 17 (1978) 884-888
$\mathrm{Cr}(\mathrm{CO})_{5}\left(\mathrm{H}_{2}\right)$	1661	1603	R. K. Upmacis, M. Poliakoff and J. J. Turner
$\mathrm{Mo}(\mathrm{CO})_{5}\left(\mathrm{H}_{2}\right)$	1668	1608	
$\mathrm{W}(\mathrm{CO})_{5}\left(\mathrm{H}_{2}\right)$	1659	1596	
$\mathrm{Cr}(\mathrm{CO})_{5}\left({ }^{13} \mathrm{COCH} 42 \mathrm{OK}\right)$	1644	1583	R. N. Perutz and J. J. Turner
$\mathrm{Cr}(\mathrm{CO})_{5}\left({ }^{13} \mathrm{CO} \mathrm{Ar} \mathrm{20K)}\right.$	1652	1591	
$\mathrm{Mo}(\mathrm{CO})_{5}\left({ }^{13} \mathrm{CO} \mathrm{CH}_{4} 2 \mathrm{OK}\right)$	1653	1590	
$\mathrm{W}(\mathrm{CO})_{5}\left({ }^{13} \mathrm{COCH}_{4} 2 \mathrm{OK}\right)$	1643	1575	
$\mathrm{Mo}(\mathrm{CO})_{5}\left(\mathrm{~N}_{2}\right) 1$	1665	1607	J. K. Burdett, A. J. Downs, G. P. Gaskill, M. A. Graham, J.
$\mathrm{Mo}(\mathrm{CO})_{5}\left(\mathrm{~N}_{2}\right) 2$	1660	1608	Inorg. Chem., 17 (1978) 523-532
$\mathrm{Mo}(\mathrm{CO})_{5}\left(\mathrm{~N}_{2}\right) 3$	1662	1608	

$\mathrm{Mo}(\mathrm{CO})_{5}\left(\mathrm{~N}_{2}\right) 4$	1663	1608	

We can now use the two methods to predict values for $\mathrm{M}(\mathrm{CO})_{4} \mathrm{~L}_{2}$

3.1.1 The b_{2} method

We need two of the CO groups in cis- $\mathrm{M}(\mathrm{CO})_{4}(\mathrm{~L})_{2}$ to be silenced this time, giving cis- $\mathrm{M}(\mathrm{CO})_{2}(\underline{\mathrm{CO}})_{2}(\mathrm{~L})_{2}$. The b_{2} mode of this molecule is identical to the b_{2} mode in the cis- $\mathrm{M}(\mathrm{CO})_{2}(\mathrm{~L})_{4}$ complex so we can calculate a $K\left(\underline{a}_{1}\right)$ for this molecule and thus the force constants for the equatorial CO groups.

$$
k_{2}=\frac{1}{2}\left(K\left(\underline{a}_{1}\right)+K\left(b_{2}\right)\right) \quad k_{22}=\frac{1}{2}\left(K\left(\underline{a}_{1}\right)-K\left(b_{2}\right)\right)
$$

Having k_{2} and k_{22} we can now calculate the remaining three force constants in cis- $\mathrm{M}(\mathrm{CO})_{4}(\mathrm{~L})_{2}$.

$$
\begin{aligned}
& k_{1}=\left[K\left(a_{1}\right)_{1}+K\left(a_{1}\right)_{2}+K\left(b_{1}\right)+K\left(b_{2}\right)-2 k_{2}\right] / 2 \quad k_{11}=k_{1}-K\left(b_{1}\right) \\
& k_{12}=\sqrt{\frac{\left[k_{1}+k_{11}-K\left(a_{1}\right)_{1}\right]\left[k_{2}+k_{22}-K\left(a_{1}\right)_{1}\right]}{4}}
\end{aligned}
$$

3.1.2 The b_{1} method

This second approach is only slightly different to the b_{2} method. We need to start with molecules of the general formula trans$\mathrm{M}(\mathrm{CO})_{2}(\mathrm{~L})_{4}$. Unfortunately, the experimental data for such complexes is lacking so we use the same data we used in the case of mer- $\mathrm{M}(\mathrm{CO})_{3}(\mathrm{~L})_{3}$ (Table S4). These give the force constants for the a_{1} and b_{1} modes of the hypothetical molecules trans$\mathrm{M}(\mathrm{CO})_{2}(\underline{\mathrm{CO}})_{3}(\mathrm{~L})$ where the two vibrating CO groups are trans to one another (and there are three non-vibrating, "silent" CO groups). So, starting with the b_{1} mode in $\operatorname{cis}-\mathrm{M}(\mathrm{CO})_{4}(\mathrm{~L})_{2}$, and again silencing two of the CO groups, the reference line is:

$$
K\left(\underline{a}_{1}\right)=0.6771 \times K\left(b_{1}\right)+620.5 \text { (the same as for mer- } \mathrm{M}(\mathrm{CO})_{3}(\mathrm{~L})_{3} \text { complexes) }
$$

and the procedure is identical only this time k_{1} and k_{11} are calculated first.

The cis-M(CO) ${ }_{4}(\mathrm{~L})_{2}$ carbonyls are a good test of the silent CO method and the force constants calculated using the b_{2} method and the b_{1} method are reassuringly close. The case of $\mathrm{W}(\mathrm{CO})_{4}($ diphos $)$ is highlighted in the main text.

$3.2 \quad \mathrm{C}_{3 v}$ and $\mathrm{C}_{2 \mathrm{v}} \mathrm{Fe}(\mathrm{CO})_{4} \mathrm{~L}$ complexes

3.2.1 $\quad \mathrm{C}_{3 v}$ symmetry $\mathrm{Fe}(\mathrm{CO})_{4}(\mathrm{~L})$ where L is axial

A large number of ligands replace an axial- CO group in $\mathrm{Fe}(\mathrm{CO})_{5}$ to produce the $\mathrm{C}_{3 \mathrm{v}}$ isomer of $\mathrm{Fe}(\mathrm{CO})_{4}(\mathrm{~L})$. The same is true of the corresponding ruthenium and osmium complexes. This configuration, yet again, has an underdetermined force field with three frequencies ($2 a_{1}+e$) and four force constants ($k_{1}, k_{2}, k_{11}, k_{12}$).

The secular equations are:

$$
a_{1}:\left|\begin{array}{cc}
k_{1}+2 k_{11}-K & \sqrt{3} k_{12} \\
\sqrt{3} k_{12} & k_{2}-K
\end{array}\right|=0
$$

The reference line for this class of compounds would ideally have originated from data from trans- $\mathrm{M}(\mathrm{CO})_{3}(\mathrm{~L})_{2}$ or trans$\mathrm{M}(\mathrm{CO})_{3}(\mathrm{~L})\left(\mathrm{L}^{\prime}\right)$ species and $\mathrm{M}(\mathrm{CO})_{2}(\mathrm{~L})_{3}$ complexes $(\mathrm{M}=\mathrm{Fe}, \mathrm{Ru}, \mathrm{Os})$ with all CO groups in equatorial positions.

So once again we resort to isotopic data, this time for axially-substituted $\mathrm{Fe}(\mathrm{CO})_{4}$ (phosphine) and equatorially-substituted $\mathrm{Fe}(\mathrm{CO})_{4}$ (olefin) complexes. Employing the k_{1} and $k_{11}\left(k_{\text {eq }}\right.$ and $\left.k_{\text {eq,eq }}\right)$ numbers permits prediction of the two frequencies, and hence K values, for the theoretical $\mathrm{C}_{2 \mathrm{v}} \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{~L}_{3}$ systems. These numbers are given in Table S 6 .

This produces a reference line:

$$
K\left(\underline{a}_{1}\right)=0.8076 \times K(e)+387.3
$$

(13 points, $\mathrm{R}^{2}=0.9946$)

Table S6: Hypothetical $\mathrm{C}_{2 v}-\mathrm{Fe}(\mathrm{CO})_{2}(\mathrm{~L})_{4}$ data calculated from isotopic data

Molecule	$K\left(a_{1}\right)$	$K(e)$	Ref.
$\mathrm{Fe}(\mathrm{CO})_{5}$	1697	1617	G. Bor Inorg. Chim. Acta, 3 (1969) 191-195
$\mathrm{Fe}(\mathrm{CO})_{2}\left(\mathrm{PF}_{3}\right)_{3}\left[\mathrm{C}_{2 v}\right.$ isomer]	1679	1595	R. J. Clark Inorg. Chem., 3 (1964) 1395-1398
$\mathrm{Fe}(\mathrm{CO})_{4}\left(\mathrm{PPh}_{3}\right)$	1616	1526	D. J. Darensbourg, H. H. Nelson and C. L. Hyde
$\mathrm{Fe}(\mathrm{CO})_{4}\left(\mathrm{PPhMe}_{2}\right)$	1610	1516	
$\mathrm{Fe}(\mathrm{CO})_{4}\left(\mathrm{P}(\mathrm{OPh})_{3}\right)$	1637	1547	
$\mathrm{Fe}(\mathrm{CO})_{4}\left(\mathrm{P}(\mathrm{OMe})_{3}\right)$	1634	1542	
$\mathrm{Fe}(\mathrm{CO})_{4}\left(\mathrm{PPh}_{2} \mathrm{OMe}\right)$	1625	1531	
$\mathrm{Fe}(\mathrm{CO})_{4}\left(\mathrm{Pn}-\mathrm{Bu}_{3}\right)$	1607	1509	
$\mathrm{Fe}(\mathrm{CO})_{4}\left(\mathrm{CH}_{2}=\mathrm{CHCOCl}\right)$	1666	1734	
$\mathrm{Fe}(\mathrm{CO})_{4}\left(\mathrm{CH}_{2}=\mathrm{CHCOOH}\right)$	1655	1715	
$\mathrm{Fe}(\mathrm{CO})_{4}\left(\mathrm{CH}_{2}=\mathrm{CHCONC}_{5} \mathrm{H}_{10}\right)$	1629	1701	
$\mathrm{Fe}(\mathrm{CO})_{4}\left(\mathrm{CH}_{2}=\mathrm{CHCN}\right)$	1664	1732	

Fe(CO) $)_{5}$	1695	1615	P. Portius, M. Bühl, M. W. George, F-W Grevels and James J. Turner Organometallics, 38 (2019) 4288-4297

This reference line allows us to calculate the force constants in a $C_{3 v}$ tetracarbonyl by making $K\left(b_{2}\right)=K(e)$ and calculating a value for $K\left(\underline{a}_{1}\right)$ (as before) so the force constants are:

$$
\begin{array}{ll}
k_{1}=\frac{1}{2}\left(K\left(\underline{a}_{1}\right)+K(e)\right) & k_{11}=\frac{1}{2}\left(K\left(\underline{a}_{1}\right)-K(e)\right) \\
k_{2}=K\left(a_{1}\right)_{1}+K\left(a_{1}\right)_{2}+2 K(e)-3 k_{1} & k_{12}=\sqrt{\frac{\left[k_{1}+2 k_{11}-K\left(a_{1}\right)_{1}\right]\left[k_{2}-K\left(a_{1}\right)_{1}\right]}{3}}
\end{array}
$$

3.2.2 $\quad \mathrm{C}_{2 \mathrm{v}}$ symmetry $\mathrm{Fe}(\mathrm{CO})_{4}(\mathrm{~L})$ where L is equatorial

There are fewer $\mathrm{M}(\mathrm{CO})_{4}(\mathrm{~L})(\mathrm{M}=\mathrm{Fe})$ complexes with a $C_{2 v}$ geometry although that number increases when the metal atom is Ru or Os. The secular equations for these molecules are identical to the $C_{2 v}$ molecules based on an octahedron with the sole difference that the reference line is the same as was used for the $C_{3 v}$ tetracarbonyls above (section 3.2.1) since the b_{2} mode of a $C_{2 v} \mathrm{Fe}(\mathrm{CO})_{4}(\mathrm{~L})$ species is identical in form to the e mode of the $C_{3 v}$ tetracarbonyl. This enables us, as an example, to calculate the force constants of $\mathrm{Fe}(\mathrm{CO})_{4}(\mathrm{CS})$ (data from W.Petz, J. Organomet. Chem. 146 (1978) C23-25) and they are shown, for comparison, alongside $\mathrm{Fe}(\mathrm{CO})_{5}$ (for which we have force constants from isotopic data).

Force constants for $\mathrm{Fe}(\mathrm{CO})_{4}(\mathrm{CS})$ and $\mathrm{Fe}(\mathrm{CO})_{5}$

Molecule	k_{1}	k_{2}	k_{11}	k_{12}	k_{22}
$\mathrm{Fe}(\mathrm{CO})_{4}(\mathrm{CS})$ [using b_{2} mode]	1654	1717	38	21	45
$\mathrm{Fe}(\mathrm{CO})_{5}$ [from Bor]	1657	1695	41	28	40

4 Pentacarbonyls

4.1 $\quad C_{4 v} \mathrm{M}(\mathrm{CO})_{5}(\mathrm{~L})$ complexes $(\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W})$ and $\mathrm{M}(\mathrm{CO})_{5}(\mathrm{X})(\mathrm{M}=\mathrm{Mn}, \mathrm{Re})$

There have been many force field studies (both approximate and from isotopic data) on the $M(C O)_{5}(L)$ complexes ($M=C r, M o, W$) and a significant but smaller number on $\mathrm{M}(\mathrm{CO})_{5}(\mathrm{X})(\mathrm{M}=\mathrm{Mn}, \mathrm{Re})$ compounds. It was with this type of molecule that the COfactored force field first came to be used in the 1960's. There are five force constants in the EFFF but only four possible $v(C O)$ absorptions ($2 a_{1}+b_{2}+e$). The b_{2} mode is formally Raman-active only and is often either missing or a weak, broader absorption. It has been argued that the presence in the infrared spectrum of the b_{2} mode implies distortion in the molecule away from $C_{4 v}$ symmetry to C_{s} (with $3 a^{\prime}+2 a^{\prime \prime}$ modes) and a more complicated force field. Braterman commented that, unless the ligand L possessed a four-fold axis of symmetry, the maximum possible molecular symmetry is C_{s} and the " b_{2} " mode becomes allowed, although still with a low relative intensity. The force field of a C_{s} pentacarbonyl has eight force constants (
$k_{1}, k_{2}, k_{3}, k_{11}, k_{22}, k_{12}, k_{13}, k_{23}$) and whilst some approximations realistically might be made (e.g. $k_{11} \approx k_{22}, k_{13} \approx k_{23}$) there are still three degrees of freedom.

Assuming $C_{4 v}$ symmetry, if the b_{2} mode is observed the force field is underdetermined with one degree of freedom, but the symmetry may be, as we have seen, effectively lower. If the b_{2} mode is not observed there are two degrees of freedom. Cotton's approach for the first of these scenarios was to set the cis interaction constant (between equatorial CO groups) equal to half the trans interaction constant. To cope with the second scenario, k_{12} was also set equal to the cis interaction constant, that is (in the notation used throughout this paper):

$$
k_{11}^{c}=\frac{1}{2} k_{11}^{t}=k_{12}
$$

This limitation is unnecessary with the silent-CO method.
The secular equations linking EFFF force constants with symmetry force constants are:

$$
\begin{aligned}
& a_{1}:\left|\begin{array}{cc}
k_{1}+k_{11}^{t}+2 k_{11}^{c}-K & 2 k_{12} \\
2 k_{12} & k_{2}-K
\end{array}\right|=0 \\
& b_{2}: K\left(b_{2}\right)=k_{1}-2 k_{11}^{c}+k_{11}^{t} \\
& e: K(e)=k_{1}-k_{11}^{t}
\end{aligned}
$$

We shall treat the Group 6 metal carbonyls and Group 7 metal carbonyls separately.

4.1.1 $\mathrm{M}(\mathrm{CO})_{5}(\mathrm{~L})(\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W})$

The reference line for $\mathrm{M}(\mathrm{CO})_{5}(\mathrm{~L})(\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W})$ is exactly the same as for mer- $\mathrm{M}(\mathrm{CO})_{3}(\mathrm{~L})_{3}$ complexes and refers to the hypothetical $\mathrm{M}(\mathrm{CO})_{2}(\underline{\mathrm{CO}})_{3}(\mathrm{~L})$ molecule where the vibrating CO groups are mutually trans. So we use $K\left(\underline{a}_{1}\right)$ to represent the symmetric stretch of this trans-dicarbonyl and $K(e)$ from the parent pentacarbonyl).

$$
K\left(\underline{a}_{1}\right)=0.6771 \times K(e)+620.5
$$

This enables us to calculate k_{1} and k_{11}^{t} as though $\mathrm{M}(\mathrm{CO})_{5}(\mathrm{~L})$ was a trans-dicarbonyl; $\mathrm{M}(\mathrm{CO})_{2}(\underline{\mathrm{CO}})_{3}(\mathrm{~L})$.

$$
k_{1}=\frac{1}{2}\left(K\left(\underline{a}_{1}\right)+K(e)\right) \quad k_{11}^{t}=\frac{1}{2}\left(K\left(\underline{a}_{1}\right)-K(e)\right)
$$

This removes one degree of freedom but if the b_{2} mode is not observed the force field is still underdetermined as $K\left(b_{2}\right)$ cannot be calculated. However, the e mode and b_{2} mode of $\mathrm{M}(\mathrm{CO})_{5}(\mathrm{~L})$ only involve the motion of the equatorial CO groups, with no complicating contribution from the axial CO group so we might expect a strong correlation between $K\left(b_{2}\right)$ and $K(e)$, using the force constants from the $\mathrm{M}(\mathrm{CO})_{5}(\mathrm{~L})$ complexes that have had a full EFFF determined. This is exactly what we find:

$$
K\left(b_{2}\right)=0.8492 \times K(e)+291.9 \quad\left(18 \text { data points } R^{2}=0.9863\right)
$$

So, regardless of whether the b_{2} mode is observed or not, the force constants can be calculated.

$$
\begin{aligned}
& k_{2}=K\left(a_{1}\right)_{1}+K\left(a_{1}\right)_{2}+K\left(b_{2}\right)+2 K(e)-4 k_{1} \\
& k_{11}^{c}=\frac{1}{2}\left(k_{1}+k_{11}^{t}-K\left(b_{2}\right)\right) \\
& \quad k_{12}=\sqrt{\frac{\left[k_{1}+2 k_{11}^{c}+k_{11}^{t}-K\left(a_{1}\right)_{1}\right]\left[k_{2}-K\left(a_{1}\right)_{1}\right]}{4}}
\end{aligned}
$$

4.1.2 $\mathrm{Mn}(\mathrm{CO})_{5}(\mathrm{X})$

The Group 7 metals ($\mathrm{Mn}, \mathrm{Tc}, \mathrm{Re}$) can, in theory, be treated the same way although there are far fewer force fields calculated from isotopic spectra available and consequently there is less confidence in the reference lines. The only metal where enough data exists is Mn.

To date, only $\mathrm{Mn}(\mathrm{CO})_{5-x}\left({ }^{13} \mathrm{CO}\right)_{x} \mathrm{H}, \mathrm{Mn}(\mathrm{CO})_{5-x}\left({ }^{13} \mathrm{CO}\right)_{x} \mathrm{Cl}$ and (in a CO matrix) $\mathrm{Mn}(\mathrm{CO})_{5}$ have been studied where the full range of substituted molecules were used to determine force constants. Earlier work by Kaesz et al used less ${ }^{13} \mathrm{CO}$ substitution but, nonetheless, a robust set of force constants were produced for each of the $\mathrm{M}(\mathrm{CO})_{5} \mathrm{X}$ molecules ($\mathrm{M}=\mathrm{Mn}, \mathrm{Re} ; \mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}$). Using the same reference line as the chromium group produces poor agreement. However, using the limited number of studies available gives a reference line for Mn compounds with two CO groups trans (i.e. trans $-\mathrm{Mn}(\mathrm{CO})_{2}(\underline{\mathrm{CO}})_{3}(\mathrm{X})$) to each other:

$$
K\left(\underline{a}_{1}\right)=0.8201 \times K(e)+350.1 \quad \text { (9 data points, } R^{2}=0.9882 \text {) }
$$

This is significantly different from that used for the Group 6 compounds. Using the same data we can also produce an analogous relationship between the $K\left(b_{2}\right)$ and $K(e)$ symmetry force constants.

$$
K\left(b_{2}\right)=1.0178 \times K(e)+18.5 \quad\left(7 \text { data points, } R^{2}=0.9989\right)
$$

Again, this is very different from the equation used for Group 6 complexes, but the amount of data is limited. There are not enough data to produce similar relationships for $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{X}$ nor $\mathrm{Tc}(\mathrm{CO})_{5}(\mathrm{X})$ complexes.

Table S7: trans- $\mathrm{Mn}(\mathrm{CO})_{2}(\underline{\mathrm{CO}})_{3}(\mathrm{X})$ molecules to calculate EFFFs for $\mathrm{Mn}(\mathrm{CO})_{5}(\mathrm{X})$.

Molecule	$K\left(a^{\prime}\right)$	$K\left(a^{\prime \prime}\right)$	Ref.
$\mathrm{Mn}(\mathrm{CO})_{5} \mathrm{Cl}$	1796	1706	H. D. Kaesz, R. Bau, D. Hendrickson and J. M. Smith $\mathrm{Mn}(\mathrm{CO})_{5} \mathrm{Br}$

$\mathrm{Mn}(\mathrm{CO})_{5} \mathrm{I}$	1771	1687	
$\mathrm{Mn}(\mathrm{CO})_{5} \mathrm{CH}_{3}$	1728	1634	
$\mathrm{Mn}(\mathrm{CO})_{5} \mathrm{H}\left(\mathrm{CH}_{4}, 20 \mathrm{~K}\right)$	1739	1643	S. P. Church, M. Poliakoff, J. A. Timney and J. J. Turner Inorg. Chem., 22 (1983) 3259-3266
$\mathrm{Mn}(\mathrm{CO})_{5} \mathrm{Cl}\left(\mathrm{CH}_{4}, 12 \mathrm{~K}\right)$	1803	1710	T. McHugh, A. J. Rest and D. J. Taylor J. C. S. Dalton, (1980) 1803-1808
$\mathrm{Mn}(\mathrm{CO})_{5}(\mathrm{CO}, 20 \mathrm{~K})$	1706	1596	S. P. Church, M. Poliakoff, J. A. Timney and J. J. Turner J. Am. Chem. Soc., 103 (1981) 7515-7520
$\mathrm{Mn}(\mathrm{CO})_{5} \mathrm{H}$	1736	1640	P. S. Braterman, R. W. Harrill and H. D. Kaesz J. Am. Chem. Soc., 89 (1967) 2851-2855
$\mathrm{Mn}(\mathrm{CO})_{5} \mathrm{D}$	1737	1640	J.

$5 \quad$ Force Constant Calculations for $\mathrm{Fe}(\mathrm{CO})_{4}\left(\mathrm{~N}_{2}\right)$

The characterization of $\mathrm{Fe}(\mathrm{CO})_{4}\left(\mathrm{~N}_{2}\right)$ in a nitrogen matrix is an interesting application of the "silent-CO" method and we include additional information here that supports our conclusion that the molecule has a $C_{3 v}$ structure with the N_{2} ligand occupying an axial position in the trigonal bipyamid.

The $v(N N)$ stretching region
The first hint of the correct structure comes from the value of the N-N stretching vibration. We showed, many years ago ${ }^{1}$, that the $N N$ force constant of $M\left(L_{n}\left(N_{2}\right)\right.$ was linearly related to the force constant of the equivalent carbonyl $M(L)_{n}(C O)$:
$k_{N N}\left[M(L)_{n}\left(N_{2}\right)\right]=1.355 k_{C O}\left[M(L)_{n}(C O)\right]-210$

So, for $\mathrm{Fe}(\mathrm{CO})_{4}\left(\mathrm{~N}_{2}\right)$, there are two possible $v(N N)$ frequencies because the equivalent carbonyl ($\left.\mathrm{Fe}(\mathrm{CO})_{5}\right)$ has two chemically different CO groups. Recently, Portius, Turner ${ }^{2}$ and colleagues have calculated the force constants for $\mathrm{Fe}(\mathrm{CO})_{5}$ and this enables us to predict $k(N N)$ and thus $v(N N)$ for both likely isomers of $\mathrm{Fe}(\mathrm{CO})_{4}\left(\mathrm{~N}_{2}\right)$:

Observed $v(N N)$ (average)	$2246 \mathrm{~cm}^{-1}$
Predicted $v(N N)$, structure A $\left(C_{3 v}\right)$	$2251 \mathrm{~cm}^{-1}$
Predicted $v(N N)$, structure B $\left(C_{2 v}\right)$	$2219 \mathrm{~cm}^{-1}$

Clearly, the predicted frequency (obsd - calc $=-5 \mathrm{~cm}^{-1}$) for A is much closer to the observed frequency than that predicted (obsd calc $=+27 \mathrm{~cm}^{-1}$) for B. This gives the first strong indication that A is the correct structure.

We would note that the $v(N N)$ stretch of $\mathrm{Fe}(\mathrm{CO})_{4}\left(\mathrm{~N}_{2}\right)$ (either isomer; A or B) will be of symmetry ${ }^{a_{1}}$ so we would expect some mixing with the $v(C O)$ stretches of the same symmetry. The magnitude of the interaction constant $k_{C O, N N}$ is probably comparable to ${ }^{k_{C O, C O}}$ but this, in fact, makes very little difference to the $v(C O)$ and $v(N N)$ frequencies; they are effectively decoupled.

Reference Lines for $\mathrm{Fe}(\mathrm{CO}) 4(\mathrm{~L})$

The reference line for $\mathrm{Fe}(\mathrm{CO})_{4}(\mathrm{~L})$ is actually for $\mathrm{Fe}(\mathrm{CO})_{2}(\underline{\mathrm{CO}})_{2}(\mathrm{~L})$ where the two vibrating CO groups are in the equatorial plane. This means that we use the same reference line for $C_{3 v} \mathrm{Fe}(\mathrm{CO})_{4}(\mathrm{~L})$ and $C_{2 v} \mathrm{Fe}(\mathrm{CO})_{4}(\mathrm{~L})$.

$$
K\left(\underline{a}_{1}\right)=0.8076 \times K\left(b_{2}\right)+387.3
$$

For $C_{3 v} \mathrm{Fe}(\mathrm{CO})_{4}(\mathrm{~L})\left(\right.$ where $\left.K(e)=K\left(b_{2}\right)\right)$

$$
\begin{aligned}
& k_{1}=\frac{1}{2}\left[K\left(\underline{a}_{1}\right)+K(e)\right] \\
& k_{11}=\frac{1}{2}\left[K\left(\underline{a}_{1}\right)-K(e)\right] \\
& k_{2}=K\left(a_{1}\right)_{1}+K\left(a_{1}\right)_{2}+2 K(e)-3 k_{1} \\
& k_{12}=\sqrt{\frac{\left[k_{1}+2 k_{11}-K\left(a_{1}\right)_{1}\right]\left[k_{2}-K\left(a_{1}\right)_{1}\right]}{3}}
\end{aligned}
$$

This gives, for $\mathrm{C}_{3 \mathrm{v}} \mathrm{Fe}(\mathrm{CO})_{4}\left(\mathrm{~N}_{2}\right)$:

$$
k_{1}=1630 \quad k_{2}=1684 \quad k_{11}=41 \quad k_{12}=35
$$

For $\mathrm{C}_{2 v} \mathrm{Fe}(\mathrm{CO})_{4}(\mathrm{~L})$
There are two modes we can apply the silent CO method to: b_{2} (as with the $C_{3 v}$ isomer above) or, with less confidence, the b_{1} (taking the reference line used for the octahedral $\mathrm{M}(\mathrm{CO})_{4}(\mathrm{~L})_{2}$ species) from two CO groups at 180°)

Using the b_{2} mode:
This uses the same reference line as the $C_{3 v}$ isomer:

$$
K\left(\underline{a}_{1}\right)=0.8076 \times K\left(b_{2}\right)+387.3
$$

Thus:

$$
\begin{aligned}
& k_{1}=\frac{1}{2}\left[K\left(\underline{a}_{1}\right)+K\left(b_{2}\right)\right] \\
& k_{11}=\frac{1}{2}\left[K\left(\underline{a}_{1}\right)-K\left(b_{2}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& k_{2}=\frac{1}{2}\left(K\left(a_{1}\right)_{1}+K\left(a_{1}\right)_{2}+K\left(b_{1}\right)+K\left(b_{2}\right)-2 k_{1}\right) \\
& k_{12}=\sqrt{\frac{\left[k_{1}+k_{11}-K\left(a_{1}\right)_{1}\right]\left[k_{2}+k_{22}-K\left(a_{1}\right)_{1}\right]}{4}}
\end{aligned}
$$

Depending on the way the bands are assigned, this gives two solutions (see main text).

The $C_{2 v} \mathrm{Fe}(\mathrm{CO})_{4}(\mathrm{~L})$ case has an alternative approach using a different reference line (i.e. that used in the octahedral $\mathrm{M}(\mathrm{CO})_{4}(\mathrm{~L})_{2}$ complexes) that applies to the b_{1} mode rather than the b_{2} :

$$
\begin{aligned}
& K\left(\underline{a}_{1}\right)=0.6771 \times K\left(b_{1}\right)+621 \\
& k_{2}=\frac{1}{2}\left[K\left(\underline{a}_{1}\right)+K\left(b_{1}\right)\right] \\
& k_{22}=\frac{1}{2}\left[K\left(\underline{a}_{1}\right)-K\left(b_{1}\right)\right] \\
& k_{1}=\frac{1}{2}\left(K\left(a_{1}\right)_{1}+K\left(a_{1}\right)_{2}+K\left(b_{1}\right)+K\left(b_{2}\right)-2 k_{2}\right) \\
& k_{12}=\sqrt{\frac{\left[k_{1}+k_{11}-K\left(a_{1}\right)_{1}\right]\left[k_{2}+k_{22}-K\left(a_{1}\right)_{1}\right]}{4}}
\end{aligned}
$$

If structure B was correct, we would expect at least one of the solutions from the different assignments to be close. [See table below] For all the $C_{2 v} \mathrm{Fe}(\mathrm{CO})_{4}(\mathrm{~L})$ species (apart from ${ }^{\mathrm{C}} \mathrm{C}_{2 v} \mathrm{Fe}(\mathrm{CO})_{4}\left(\mathrm{~N}_{2}\right)^{\prime}$) examined thus far (in the main text $\mathrm{Fe}(\mathrm{CO})_{4}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$ was added as an example) there is very close agreement between the two methods.

Comparison of calculated force constants $\left(\mathrm{Nm}^{-1}\right)$ for $C_{2 v} \mathrm{Fe}(\mathrm{CO})_{4}\left(\mathrm{~N}_{2}\right)(\mathrm{B})$ using the b_{1} mode and the b_{2} mode and the reference lines as above.

Assig.	Mode	a_{1}	a_{1}	b_{1}	b_{2}	k_{1}	k_{2}	k_{11}	k_{22}	k_{12}
1	b_{2}	2083.3	1981.6	2006.8	1971.7	1613	1655	43	29	41
	b_{1}	2083.3	1981.6	2006.8	1971.7	1593	1674	24	48	33
2	b_{2}	2083.3	1981.6	1971.7	2006.8	1664	1604	37	34	39
	b_{1}	2083.3	1981.6	1971.7	2006.8	1641	1626	15	57	41

As a check of the method, we used the known $\mathrm{C}_{2 v}$ structure of $\mathrm{Fe}(\mathrm{CO})_{4}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$, which has an equatorial $\mathrm{C}_{2} \mathrm{H}_{4}$, as this gives a comparable molecule to show how the "silent CO" method should work. This molecule has v(CO) frequencies at 2087, 2013 (sh),

2007, $1984 \mathrm{~cm}^{-1}$ with the $2007 \mathrm{~cm}^{-1}$ band being the most intense ${ }^{3}$. The force constants can be calculated by using the b_{1} mode or the b_{2} mode as a starting point. The results are given in Table S8:

Table S8:
Calculated EFFF force constants (in Nm^{-1}) for $\mathrm{Fe}(\mathrm{CO})_{4}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$

	k_{1}	k_{2}	k_{11}	k_{22}	k_{12}
Using b_{1} mode	1631	1676	41	49	28
Using b_{2} mode	1632	1674	42	48	28

The agreement between the two calculations is extremely good; unlike for $C_{2 v} \mathrm{Fe}(\mathrm{CO})_{4}\left(\mathrm{~N}_{2}\right)$

[^0]
[^0]: 1 J. A. Timney, The Identification of Metal Carbonyl Fragments, PhD Thesis, Newcastle University (1979)
 2 P. Portius, M. Buhl, M. W. George, F-W. Grevels and J. J. Turner, Organometallics 2019, 38, 4288
 3 B. H. Weiller, M. E. Miller and Edward R. Grant, J. Am. Chem. Soc., 1987, 109, 352

