Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2021

Electronic Supplementary Material (ESI) for DALTON TRANSACTIONS.

A Photoluminescent Thermometer made from a Thermoresponsive Tetranuclear Gold Complex and Phosphor N630

Wen-Di Xu,^a Jia-Jun Yan,^a Meng-Yao Feng,^a Hai-Yan Li,^b David James Young,^c and Zhi-Gang Ren*^a

^a College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, P. R. China. E-mail: renzhigang@suda.edu.cn; Fax: +86-512-65880328.

^b Analysis and Testing Center, Soochow University, Suzhou 215123, Jiangsu, P. R. China.

^c College of Engineering, Information Technology and Environment, Charles Darwin University, Northern Territory 0909, Australia.

Contents

Fig. s1. TGA curve of 1 ·EtOH from room temperature to 500 °C. ······S2
Fig. s2. IR spectra of compound 1 and H_2 mbaS2
Fig. s3. ¹ H, ¹³ C and ³¹ P NMR spectra of 1 in DMSO- d_6 . S3
Fig. s4. Solid-state excitation (black) and emission (green) spectra of 1. EtOH at room temperature
Fig. s5. PL intensity of 1 over five cycles between 80 and 300 K and between 300 and 370K
Fig. s6. Emission spectra of N630 at 80-300 K (left) and at 300-370 K (right) at an excitation wavelength of 370 nmS4
Fig. s7. Solid-state UV-Vis spectra of compound 1 at 295, 325 and 355 K······S5
Table s1. Selected crystallographic data and refinement parameters for 1. EtOH at different temperatures. S5
Table s2. Selected Bond Lengths and Angels of 1·EtOH at different temperatures. S5

Fig. s1. TGA curve of 1 · EtOH from room temperature to 500 °C.

Fig. s2. IR spectra of compound 1 (upper) and H_2 mba (lower).

Fig. s3. ¹H, ¹³C and ³¹P NMR spectra of 1 in DMSO-*d*₆.

Fig. s4. Solid-state excitation (black) and emission (green) spectra of 1. EtOH at room temperature.

Fig. s5. PL intensity of 1 over five cycles between 80 and 300 K (left) and between 300 and 370 K (right). The excitation wavelength was 370 nm.

Fig. s6. Emission spectra of N630 at 80-300 K (left) and at 300-370 K (right) at an excitation wavelength of 370 nm.

Fig. s7. Solid-state UV-Vis spectra of compound 1 at 295, 325 and 355 K $\,$

Table s1. Selected crystallographic data and refinement parameters for 1. EtOH at different temperatures.

Temperature	110 K	140 K	180 K	220 K	260 K	300 K	
Empirical formula	C85H77Au4ClN4O7P4S3						
Formula weight	2309.88						
Crystal system	triclinic						
Space group	Pī						
<i>a</i> / Å	11.2814(9)	11.2999(9)	11.3296(10)	11.3392(6)	11.3501(6)	11.3650(7)	
b∕ Å	16.5641(14)	16.5823(13)	16.6117(14)	16.6308(9)	16.6508(9)	16.6659(9)	
<i>c</i> / Å	23.6076(19)	23.6305(19)	23.632(2)	23.7027(13)	23.7568(13)	23.8298(13)	
<i>α</i> /°	81.379(3)	81.265(3)	81.126(4)	80.931(2)	80.641(2)	80.294(2)	
β/°	89.680(4)	89.613(4)	89.448(4)	89.323(2)	89.174(3)	89.011(2)	
γ/°	73.274(3)	73.337(3)	73.432(4)	73.566(2)	73.746(2)	73.898(2)	
V/ Å ³	4173.8(6)	4189.5(6)	4209.3(6)	4231.1(4)	4250.6(4)	4272.3(4)	
Z	2	2	2	2	2	2	
$ ho_{ m calc}$ / g.cm ³	1.838	1.831	1.822	1.813	1.805	1.796	
μ/mm^{-1}	10.307	10.269	10.221	10.168	10.121	10.070	
F(000)	2224	2224	2224	2224	2224	2224	
R_1^a	0.0324	0.0324	0.0367	0.0383	0.0442	0.0594	
wR2 ^b	0.0825	0.0818	0.0926	0.1027	0.1273	0.1932	
GOF°	1.057	1.040	1.046	1.057	1.065	1.085	

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|, {}^{b}wR_{2} = \{\Sigma w(F_{o}^{2} - F_{c}^{2})^{2} / \Sigma w(F_{o}^{2})^{2}\}^{1/2}. {}^{c}GOF = \{\Sigma w((F_{o}^{2} - F_{c}^{2})^{2}) / (n-p)\}^{1/2}, where n = number of reflection and p = total number of parameters refined.$

Table s2. Selected Bond	Lengths (Å)	and Angels	(°) of 1	I · EtOH at	different temperatures.
-------------------------	-------------	------------	----------	-------------	-------------------------

Temperature	110 K	140 K	180 K	220 K	260 K	300 K
Au2–Au3	3.0710(4)	3.0788(3)	3.0862(4)	3.0987(4)	3.1106(5)	3.1287(7)
Au2-Cl1	2.2994(11)	2.2982(12)	2.2965(13)	2.2974(14)	2.2943(17)	2.292(2)
Au1–P1	2.2602(11)	2.2589(12)	2.2567(14)	2.2581(14)	2.2580(17)	2.261(3)
Au2–P2	2.2320(11)	2.2313(11)	2.2329(13)	2.2335(13)	2.2324(16)	2.235(2)
Au3–P3	2.2607(12)	2.2592(13)	2.2587(15)	2.2573(16)	2.255(2)	2.252(3)
Au4–P4	2.2547(13)	2.2553(13)	2.2513(15)	2.2519(16)	2.251(2)	2.251(3)
Au1–S1	2.3102(11)	2.3097(12)	2.3092(13)	2.3092(14)	2.3089(17)	2.304(3)
Au3–S2	2.3119(13)	2.3109(14)	2.3091(17)	2.3061(19)	2.308(2)	2.309(4)
Au4–S3	2.2952(12)	2.2953(13)	2.2933(15)	2.2893(17)	2.290(2)	2.290(3)
P1-Au1-S1	174.35(4)	174.43(4)	174.49(5)	174.53(5)	174.64(6)	174.77(9)
P2-Au2-Cl1	177.44(4)	177.35(4)	177.19(5)	177.05(5)	177.01(6)	176.82(9)
P2-Au2-Au3	98.12(3)	98.27(3)	98.42(3)	98.85(4)	99.22(4)	99.70(6)
Cl1-Au2-Au3	84.37(3)	84.33(3)	84.35(4)	84.08(4)	83.76(5)	83.48(7)
P3–Au3–S2	174.68(5)	174.73(5)	174.81(6)	174.98(7)	175.03(8)	174.90(13)
P3–Au3–Au2	102.28(3)	102.40(3)	102.30(4)	102.45(4)	102.63(5)	102.80(7)
S2–Au3–Au2	82.92(4)	82.77(4)	82.77(5)	82.50(5)	82.28(7)	82.22(10)
P4-Au4-S3	174.25(4)	174.40(5)	174.56(6)	174.72(6)	174.99(8)	175.34(11)