Electronic Supplementary Material (ESI) for Dalton Transactions.
This journal is © The Royal Society of Chemistry 2021

Electronic Supplementary Material (ESI) for DALTON TRANSACTIONS

A Photoluminescent Thermometer made from a Thermoresponsive Tetranuclear Gold Complex and Phosphor N630

a. College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, P. R. China. E-mail: renzhigang@suda.edu.cn; Fax: +86-512-65880328.
b. Analysis and Testing Center, Soochow University, Suzhou 215123, Jiangsu, P. R. China.
c. College of Engineering, Information Technology and Environment, Charles Darwin University, Northern Territory 0909, Australia.

Contents

Fig. s1. TGA curve of $1 \cdot E t O H$ from room temperature to $500^{\circ} \mathrm{C}$. .. S2
Fig. s2. IR spectra of compound 1 and $\mathrm{H}_{2} \mathrm{mba}$.
S2
Fig. s3. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{31}$ P NMR spectra of 1 in DMSO-d 6 . \cdot.. 3
Fig. s4. Solid-state excitation (black) and emission (green) spectra of 1-EtOH at room temperature.
Fig. s5. PL intensity of 1 over five cycles between 80 and 300 K and between 300 and 370K......................................S4

Fig. s6. Emission spectra of N630 at 80-300 K (left) and at 300-370 K (right) at an excitation wavelength of 370 nm $\cdots \cdot$. 4

Fig. s7. Solid-state UV-Vis spectra of compound $\mathbf{1}$ at 295, 325 and 355 K• S5

Table s1. Selected crystallographic data and refinement parameters for 1•EtOH at different temperatures. $\cdots \cdots \cdots \cdots$.......S5
Table s2. Selected Bond Lengths and Angels of 1•EtOH at different temperatures. ...

Fig. s1. TGA curve of $1 \cdot \mathrm{EtOH}$ from room temperature to $500^{\circ} \mathrm{C}$.

Fig. s2. IR spectra of compound 1 (upper) and $\mathrm{H}_{2} \mathrm{mba}$ (lower).

Fig. s3. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}$ NMR spectra of 1 in DMSO-d d_{6}.

Fig. s4. Solid-state excitation (black) and emission (green) spectra of $1 \cdot \mathrm{EtOH}$ at room temperature.

Fig. s5. PL intensity of 1 over five cycles between 80 and 300 K (left) and between 300 and 370 K (right). The excitation wavelength was 370 nm .

Fig. s6. Emission spectra of N 630 at $80-300 \mathrm{~K}$ (left) and at 300-370 K (right) at an excitation wavelength of 370 nm .

Fig. s7. Solid-state UV-Vis spectra of compound 1 at 295, 325 and 355 K

Table s1. Selected crystallographic data and refinement parameters for $1 \cdot \mathrm{EtOH}$ at different temperatures.

Temperature	110 K	140 K	180 K	220 K	260 K	300 K
Empirical formula	C85H77Au4ClN4O7P4S3					
Formula weight	2309.88					
Crystal system	triclinic					
Space group	P_{1}					
a/ \AA	11.2814(9)	11.2999(9)	11.3296(10)	11.3392(6)	11.3501(6)	11.3650(7)
b/ \AA	16.5641(14)	16.5823(13)	16.6117(14)	16.6308(9)	16.6508(9)	16.6659(9)
c/ \AA	23.6076(19)	23.6305(19)	23.632(2)	23.7027(13)	23.7568(13)	23.8298(13)
$\alpha{ }^{\circ}$	81.379(3)	81.265(3)	81.126(4)	80.931(2)	80.641(2)	80.294(2)
$\beta{ }^{\circ}$	89.680(4)	89.613(4)	89.448(4)	89.323(2)	89.174(3)	89.011(2)
$\gamma /{ }^{\circ}$	73.274(3)	73.337(3)	73.432(4)	73.566(2)	73.746(2)	73.898(2)
V / \AA^{3}	4173.8(6)	4189.5(6)	4209.3(6)	4231.1(4)	4250.6(4)	4272.3(4)
Z	2	2	2	2	2	2
$\rho_{\text {cald }} / \mathrm{g} . \mathrm{cm}^{3}$	1.838	1.831	1.822	1.813	1.805	1.796
μ / mm^{-1}	10.307	10.269	10.221	10.168	10.121	10.070
$F(000)$	2224	2224	2224	2224	2224	2224
$R_{1}{ }^{\text {a }}$	0.0324	0.0324	0.0367	0.0383	0.0442	0.0594
$w R_{2}{ }^{\text {b }}$	0.0825	0.0818	0.0926	0.1027	0.1273	0.1932
GOF ${ }^{\text {c }}$	1.057	1.040	1.046	1.057	1.065	1.085

${ }^{\mathrm{a}} R_{1}=\Sigma| | F_{o}\left|-\left|F_{c} \| / \Sigma\right| F_{o}\right|,{ }^{\mathrm{b}} \mathrm{wR}_{2}=\left\{\Sigma \mathrm{w}\left(F_{o}{ }^{2}-F_{c}{ }^{2}\right)^{2} / \Sigma \mathrm{w}\left(F_{o}{ }^{2}\right)^{2}\right\}^{1 / 2}$. ${ }^{\mathrm{c}} \mathrm{GOF}=\left\{\Sigma \mathrm{w}\left(\left(F_{o}{ }^{2}-F_{c}{ }^{2}\right)^{2}\right) /(n-p)\right\}^{1 / 2}$, where $n=$ number of reflection and $p=$ total number of parameters refined.

Table s2. Selected Bond Lengths (\AA) and Angels $\left({ }^{\circ}\right)$ of $\mathbf{1} \cdot \mathrm{EtOH}$ at different temperatures.

Temperature	$\mathbf{1 1 0} \mathbf{K}$	$\mathbf{1 4 0} \mathbf{K}$	$\mathbf{1 8 0} \mathbf{K}$	$\mathbf{2 2 0} \mathbf{K}$	$\mathbf{2 6 0} \mathbf{K}$	$\mathbf{3 0 0} \mathbf{K}$
Au2-Au3	$3.0710(4)$	$3.0788(3)$	$3.0862(4)$	$3.0987(4)$	$3.1106(5)$	$3.1287(7)$
Au2-C11	$2.2994(11)$	$2.2982(12)$	$2.2965(13)$	$2.2974(14)$	$2.2943(17)$	$2.292(2)$
Au1-P1	$2.2602(11)$	$2.2589(12)$	$2.2567(14)$	$2.2581(14)$	$2.2580(17)$	$2.261(3)$
Au2-P2	$2.2320(11)$	$2.2313(11)$	$2.2329(13)$	$2.2335(13)$	$2.2324(16)$	$2.235(2)$
Au3-P3	$2.2607(12)$	$2.2592(13)$	$2.2587(15)$	$2.2573(16)$	$2.255(2)$	$2.252(3)$
Au4-P4	$2.2547(13)$	$2.2553(13)$	$2.2513(15)$	$2.2519(16)$	$2.251(2)$	$2.251(3)$
Au1-S1	$2.3102(11)$	$2.3097(12)$	$2.3092(13)$	$2.3092(14)$	$2.3089(17)$	$2.304(3)$
Au3-S2	$2.3119(13)$	$2.3109(14)$	$2.3091(17)$	$2.3061(19)$	$2.308(2)$	$2.309(4)$
Au4-S3	$2.2952(12)$	$2.2953(13)$	$2.2933(15)$	$2.2893(17)$	$2.290(2)$	$2.290(3)$
P1-Au1-S1	$174.35(4)$	$174.43(4)$	$174.49(5)$	$174.53(5)$	$174.64(6)$	$174.77(9)$
P2-Au2-Cl1	$177.44(4)$	$177.35(4)$	$177.19(5)$	$177.05(5)$	$177.01(6)$	$176.82(9)$
P2-Au2-Au3	$98.12(3)$	$98.27(3)$	$98.42(3)$	$98.85(4)$	$99.22(4)$	$99.70(6)$
C11-Au2-Au3	$84.37(3)$	$84.33(3)$	$84.35(4)$	$84.08(4)$	$83.76(5)$	$83.48(7)$
P3-Au3-S2	$174.68(5)$	$174.73(5)$	$174.81(6)$	$174.98(7)$	$175.03(8)$	$174.90(13)$
P3-Au3-Au2	$102.28(3)$	$102.40(3)$	$102.30(4)$	$102.45(4)$	$102.63(5)$	$102.80(7)$
S2-Au3-Au2	$82.92(4)$	$82.77(4)$	$82.77(5)$	$82.50(5)$	$82.28(7)$	$82.22(10)$
P4-Au4-S3	$174.25(4)$	$174.40(5)$	$174.56(6)$	$174.72(6)$	$174.99(8)$	$175.34(11)$

