Supplementary Material

Physical Properties of {Ti,Zr,Hf}₂Ni₂Sn Compounds

V.V. Romaka^{1,2}, G. Rogl¹, V. Buršíková³, J. Buršík⁴, H. Michor⁵, A. Grytsiv¹, E. Bauer⁵, G. Giester⁶, P. Rogl¹

¹ Institute of Materials Chemistry, Universität Wien, Währingerstr. 42, A-1090 Wien, Austria ² Leibniz Institute for Solid State and Materials Research Dresden (IFW Dresden), Helmholtzstr. 20, D-01069 Dresden, Germany

³ Institute of Physical Electronics, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic

⁴ Institute of Physics of Materials, Czech Academy of Sciences, Žižkova 22, 61662 Brno, Czech Republic

⁵ Institute of Solid State Physics, TU Wien, Wiedner Hauptstr. 8-10, A-1040 Wien, Austria

⁶ Institute of Mineralogy and Crystallography, Universität Wien, Althanstr.14, A-1090 Wien, Austria.

Abstract

Physical properties i.e. electrical resistivity (4.2-800K), Seebeck coefficient (300-800K), specific heat (2-110K), Vickers Hardness and elastic moduli (RT) have been defined for single-phase compounds at slightly nonstoichiometric compositions: $Ti_{2.13}Ni_2Sn_{0.87}$, $Zr_{2.025}Ni_2Sn_{0.975}$, $Hf_{2.055}Ni_2Sn_{0.945}$. From X-ray single crystal and TEM analyses $Ti_{2+x}Ni_2Sn_{1-x}$, $x\sim0.13(1)$, is isotypic with the U₂Pt₂Sn-type (space group *P*4₂/*mnm*, ternary ordered version of the Zr₃Al₂-type), also adopted by the homologous compounds with Zr, Hf.

For all three polycrystalline compounds (relative densities >95%) the electrical resistivity of the samples is metallic-like with dominant scattering from static defects mainly conditioned by offstoichiometry. Analyses of the specific heat curves C_p vs T and C_p/T vs T² reveal Sommerfeld coefficients of $\gamma_{Ti2Ni2Sn} = 14.3(3)$ mJ/molK², $\gamma_{Zr2Ni2Sn} = 10(1)$ mJ/molK², $\gamma_{Hf2Ni2Sn} = 9.1(5)$ mJ/molK² and low-temperature Debye-temperatures: $\theta_D^{LT} = 373(7)$ K, 357(14) K and 318(10)K. Einstein temperatures were in the range 130-155 K. Rather low Seebeck coefficients (<15 μ V/K), power factors (pf < 0.07 mW/mK²) and an estimated thermal conductivity of λ < 148 mWcm⁻¹K⁻¹, yield thermoelectric figures of merit ZT < 0.007 at ~800 K.

Whereas for polycrystalline Zr_2Ni_2Sn elastic properties were determined by resonant ultrasonic spectroscopy (RUS): E = 171 GPa, v = 0.31, G = 65.5 GPa, B = 147 GPa, the accelerated mechanical property mapping (XPM) mode was used to map hardness and elastic moduli of T_2Ni_2Sn . Above 180 K, Zr_2Ni_2Sn reveals a quasi-linear expansion with CTE = $15.4 \times 10^{-6}K^{-1}$.

The calculated density of states is similar for all three compounds and confirms a metallic type of conductivity. The isosurface of *elf* shows a spherical shape for Ti/Zr/Hf atoms and indicates their ionic character, while the $[Ni_2Sn]^{n-}$ sublattice reflects localizations around the Ni and Sn atoms with a large somewhat diffuse charge density between the closest Ni atoms.

Fig. S1: Rietveld refinement of hot-pressed sample prepared from the nominal composition Zr42Ni40Sn18 (in at.%). The insert shows the microstructure and the composition $Zr_{2+x}Ni_2Sn_{1-x}$, x=0.025 from the corresponding backscatter photo.

Fig. S2: Rietveld refinement of hot-pressed sample prepared from the nominal composition Hf42Ni40Sn18 (in at.%). The insert shows the microstructure and the composition $Hf_{2+x}Ni_2Sn_{1-x}$, x=0.055 from the corresponding backscatter photo.

Table S1: Interatomic distances < 0.4 nm for $Ti_{2+x}Ni_2Sn_{1-x}$, x ~ 0.13(1). Standard deviations <0.00008 nm.

Atom1 - Atom 2		Atom1 ·	Atom1 - Atom 2	
Til - 4 Nil - 2 Nil - 4 Snl - 2 Ti2	0.25466 0.25926 0.29578 0.32215	Ni - 1 N - 1 T - 2 T - 1 T	Ii1 0.24643 Ii2 0.25412 Ii1 0.25466 Ii1 0.25926	
- 2 Ti2 - 1 Ti1 - 2 Ti2	0.32213 0.33477 0.35707 0.38359	- 2 T - 2 S	ii 0.25520 ii 0.26502 n1 0.26932	
Ti2 - 2 Ni1 - 4 Ni1 - 1 Ti2 - 4 Sn1 - 2 Ti1 - 2 Ti1	0.25412 0.26502 0.28426 0.30553 0.32215 0.33477	Sn - 4 N - 4 T - 4 T - 2 S	 Ni1 0.26932 Ni1 0.29578 Ni2 0.30553 Sn1 0.32009 	