

Supporting Information

Figure S1. Size distribution of Bi_4Ir_2O particles obtained at a) 180 °C and b) 220 °C after 10 min.

Figure S2. All *in-situ* obtained powder-patterns. Blue box shows amorphous background from the glass vessel omitted in Figure 5.

Figure S3. EDX measurement and the resulting elemental distribution of bismuth, iridium and oxygen in the particles.

Figure S4. PXRD pattern of the powder obtained after the HT-XRD measurement. Ir (ref.) and Bi_2O_3 (ref.) are the calculated diffractograms based on the crystal structure of Ir (CSD-640730) and Bi_2O_3 (CSD-15072)

Figure S5. PXRD patterns obtained after treatment of freshly synthesized Bi_4Ir_2O with solutions of NaBH₄ and N₂H₄ in molar ratios of 1:10, 1:20 and 1:50 at 60 °C for 30 min.

Figure S6. Magnetic moment of Bi_4Ir_2O measured against temperature in the range of 2 to 300 K. The applied field during cooling and warming was 100 mT.

Figure S7. Selected area diffraction patterns of Bi_4Ir_2O .

Figure S8. Rietveld refinement plot of Bi_4Ir_2O . Peak positions are marked by green vertical bars. R_p = 0.05959, R_{wp} = 0.07595, R_{exp} = 0.06648, GOF= 1.14.

Empirical formula	Bi ₄ Ir ₂ O
Formula weight	1236.36
T/K	296(1)
Crystal system	orthorhombic
Space group	Pnma
a / Å	5.9826(7)
b/Å	4.0121(5)
c/Å	12.6253(5)
V / Å ³	303.04(6)
Ζ	2
$ ho_{ m calc}$ / g cm $^{-3}$	13.72
Radiation	Cu- <i>K</i> α ₁ (λ = 1.5406 Å)
2 $ heta$ range / °	5 to 90
Step width / °	0.026
Scan time / h	1
Data points	3269
R _{Bragg}	0.02434
R _p	0.05959
R_{wp}	0.07595
R _{exp}	0.06648
Goodness of fit (χ)	1.14

Table S1. Crystallographic and Rietveld refinement data of Bi₂IrO. *R* values as defined by the *TOPAS Academic V5* manual.

Table S2. Wyckoff positions, coordinates and displacement parameters (/Å) for the atoms in Bi_4Ir_2O . All atoms reside on Wyckoff positions 4c.

Atom	X	У	Z	$B_{ m eq}$
Bi1	0.1121(6)	3/4	0.1573(3)	1.8(1)
Bi2	0.1051(6)	1/4	0.4012(2)	2.1(1)
lr	0.1674(6)	1/4	0.0119(3)	2.8(1)
0	0.254(9)	3/4	0.3127(5)	3

Atom #1	Atom #2	Symmetry code	d / Å
Bi1	Bi1	x, 1+y, z	4.01(1)
Bi1	Bi1	-1/2+x, 3/2-y, 1/2-z	3.80(1)
Bi1	Bi2	-1/2+x, 3/2-y, 1/2-z	3.71(1)
Bi1	Bi2	x, y, z	3.68(1)
Bi1	Bi2	1/2-x, 1-y, -1/2+z	3.65(1)
Bi1	Bi2	1/2+x, 1/2-y, 1/2-z	3.64(1)
Bi1	lr	x, y, z	2.74(1)
Bi1	lr	-x, 1/2+y, -z	2.71(1)
Bi1	0	-1/2+x, 3/2-y, 1/2-z	2.18(5)
Bi1	0	x, y, z	2.14(2)
Bi2	Bi2	x, 1+y, z	4.01(1)
Bi2	Bi2	-x, 1/2+y, 1-z	3.44(1)
Bi2	lr	-1/2+x, 1/2-y, 1/2-z	2.84(1)
Bi2	lr	1/2-x, 1-y, 1/2+z	2.80(1)
Bi2	0	x, y, z	2.52(2)
Ir	lr	-x, 1/2+y, -z	2.81(1)

Table S3. Interatomic distances in Bi_4Ir_2O .

Figure S9. Hypothetical ordered structure model in unit cell with b' = 2b.

Table S4. Coordinates of the atoms of a hypothetical oxygen-ordered structure of Bi_4Ir_2O with maximum O···O distances. This superstructure in the monoclinic space group $P \ 1 \ 1 \ 2_1/n$ (*a*' = *a* = 5.9826 Å; *b*' = 2*b* = 8.0242 Å; *c*' = *c* = 12.6253 Å; $\alpha = \beta = \gamma = 90^\circ$) was derived from the refined structure model in *Pnma* by group-subgroup relationships. All atoms reside on Wyckoff positions 4*e*.

Atom	x	У	Z
Bi1	0.1121	0.375	0.1573
Bi2	0.1121	0.875	0.1573
Bi3	0.1051	0.125	0.4012
Bi4	0.1051	0.625	0.4012
lr1	0.1674	0.125	0.0119
lr2	0.1674	0.625	0.0119
0	0.2540	0.375	0.3127

Figure S10. HR-TEM images of Bi_4Ir_2O particles encased in an amorphous shell of 2–4 nm of thickness.