Supplementary information for

Room-temperature phosphorescence of manganesebased metal halides

Yue Zhang,^a Dian Chen,^a Kai-Hang Jin,^a Shuang-Quan Zang,^{b,*} Qing-Lun Wang^{a,*}

^aCollege of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, P. R. China. E-mail address: wangql@nankai.edu.cn (Q.-L. Wang)

^bCollege of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China. E-mail address: zangsqzg@zzu.edu.cn (S.-Q.Zang).

Theoretical calculation:

To evaluate the distortion of the inorganic octahedron, the following equations for the degree of distortion and bond were used:

$$\Delta d = \frac{1}{6} \sum_{n=1}^{6} \frac{(d_n - d)^2}{d}$$
$$\sigma^2 = \frac{1}{11} \sum_{n=1}^{12} (\theta_n - 90^\circ)^2$$

Where θ_n is the X–M–X bond angle, d_n is the M–X bond length, and d is the average value of the M–X bond distances.

References

- 1. W. Baur, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1974, 30, 1195–1215.
- 2. K. Robinson, G. V. Gibbs and P. H. Ribbe, Science., 1971, 172, 567.
- H.-P. Lu, C.-X. Xiao, R.-Y. Song, T.-Y. Li, A. E. Maughan, A. Levin, R. Brunecky, J. J. Berry, D. B. Mitzi, V. Blum and M. C. Beard, J. Am. Chem. Soc., 2020, 142, 13030–13040.
- Z.-Z. Zhang, J.-C. Jin, L.-K. Gong, Y.-P. Lin, K.-Z. Du and X.-Y. Huang, *Dalton Trans.*, 2021, 50, 3586–3592
- M.-Y. Li, J.-W. Lin, K.-J. Liu, L.-b. Fan, N. Wang, Z.-N. Guo, W.-X. Yuan, J. Zhao, and Q.-L. Liu, *Inorg. Chem.*, 2021, 60, 11429–11434

Fig. S1 (a) The simulated and experimental PXRD pattern of $\{[H_2DAP]MnCl_4\}_n$ (1); (b) The simulated and experimental PXRD pattern of $\{[(H_2MELA)_2MnCl_5]Cl\}_n$ (2); (c) The simulated and experimental PXRD pattern of $[H_2TAP]_2MnCl_6$ (3); (d) The simulated and experimental PXRD pattern of $[H_2MXD]_2MnCl_6$ (4).

Fig. S2 (a) The thermogravimetric analysis of $\{[H_2DAP]MnCl_4\}_n$ (1); (b) The thermogravimetric analysis of $\{[(H_2MELA)_2MnCl_5]Cl\}_n$ (2); (c) The thermogravimetric analysis of $[H_2TAP]_2MnCl_6$ (3); (d) The thermogravimetric analysis of $[H_2MXD]_2MnCl_6$ (4).

Fig. S3 (a) The smallest asymmetric unit of $\{[H_2DAP]MnCl_4\}_n$ (**1**), as well as the bond length and bond angle; (b) The smallest asymmetric unit of $\{[(H_2MELA)_2MnCl_5]Cl\}_n$ (**2**) and the bond length; (c) The smallest asymmetric unit of $[H_2TAP]_2MnCl_6$ (**3**) and the bond length; (d) The smallest asymmetric unit of $[H_2MXD]_2MnCl_6$ (**4**) and the bond length.

Fig. S4 (a) Excitation and emission spectra of $\{[(H_2MELA)_2MnCl_5]Cl\}_n$ (2); (b) Decay and fitted curve at room temperature with emission at $\lambda_{em} = 616$ nm of $\{[(H_2MELA)_2MnCl_5]Cl\}_n$ (2). τ is equivalent to the lifetime.

Fig. S5 (a) Excitation and emission spectra of $[H_2TAP]_2MnCl_6$ (3); (b) Decay and fitted curve at room temperature with emission at $\lambda_{em} = 612$ nm of $[H_2TAP]_2MnCl_6$ (3). τ is equivalent to the lifetime.

Fig. S6 Comparison of luminescence intensity of $\{[H_2DAP]MnCl_4\}_n$ (1), $\{[(H_2MELA)_2MnCl_5]Cl\}_n$ (2), $[H_2TAP]_2MnCl_6$ (3) and $[H_2MXD]_2MnCl_6$ (4) at the same excitation wavelength.

	${[H_2DAP]MnCl_4}_n$ (1)	${[(H_2MELA)_2MnCl_5]Cl}_n$ (2)
Empirical formula	$C_{3}H_{12}Cl_{4}MnN_{2}$	$C_6H_{16}Cl_6MnN_{12}$
Formula weight	272.89	523.95
Temperature/K	293(2)	293(2)
Crystal system	orthorhombic	monoclinic
Space group	Imma	$P2_1/m$
a/Å	7.1701(9)	5.40460(10)
b/Å	18.986(2)	15.3969(4)
$c/{ m \AA}$	7.3547(8)	10.8565(3)
$\alpha / ^{\circ}$	90	90
$eta /^{\circ}$	90	93.166(2)
$\gamma^{\prime \circ}$	90	90
Volume/Å ³	1001.2(2)	902.03(4)
Ζ	4	2
$ ho_{ m calc} g/ m cm^3$	1.810	1.929
μ/mm^{-1}	20.050	14.338
F(000)	548.0	526.0
Crystal size/mm ³	$0.03 \times 0.03 \times 0.02$	$0.06 \times 0.06 \times 0.05$
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)	CuKa ($\lambda = 1.54184$)
2θ range for data collection/°	9.316 to 129.878	8.156 to 147.708
Reflections collected	1344	4101
Independent reflections	481 [R_{int} = 0.0799]	1849 [R_{int} = 0.0424]
Data/restraints/parameters	481/0/33	1849/0/121
Goodness-of-fit on F^2	1.113	1.137
Final <i>R</i> indexes [I>= 2σ (I)]	$R_1 = 0.0654, wR_2 = 0.1586$	$R_1 = 0.0576, wR_2 = 0.1676$
Final R indexes [all data]	$R_1 = 0.0666, WR_2 = 0.1596$	$R_1 = 0.0611, wR_2 = 0.1694$
Largest diff. peak/hole / e Å ⁻³	1.10/-0.55	1.00/-0.85

 $\label{eq:table_stabl$

 $R_1 = \sum ||F_0| - |F_c|| / \sum |F_0|. \ wR_2 = \left[\sum w(F_0^2 - F_c^2)^2 / \sum w(F_0^2)^2\right]^{1/2}$

	[H ₂ TAP] ₂ MnCl ₆	[H ₂ MXD] ₂ MnCl ₆
Empirical formula	$C_8H_{18}Cl_6MnN_{10}$	$C_{16}H_{28}Cl_6MnN_4$
Formula weight	521.96	544.06
Temperature/K	200.00(10)	296.6(6)
Crystal system	monoclinic	triclinic
Space group	I2/m	<i>P</i> -1
a/Å	8.9461(3)	7.5206(3)
b/Å	9.6604(3)	8.4873(3)
c/Å	11.2084(3)	10.5291(3)
$\alpha / ^{\circ}$	90	101.991(3)
$eta /^{\circ}$	105.229(3)	99.889(3)
$\gamma/^{\circ}$	90	112.943(3)
Volume/Å ³	934.65(5)	581.09(3)
Ζ	2	1
$ ho_{ m calc} { m g/cm^3}$	1.855	1.555
μ/mm^{-1}	13.802	11.160
<i>F</i> (000)	526.0	279.0
Crystal size/mm ³	$0.07 \times 0.05 \times 0.05$	$0.04 \times 0.03 \times 0.02$
Radiation	$CuK\alpha \ (\lambda = 1.54184)$	$CuK\alpha$ ($\lambda = 1.5418$)
2θ range for data collection/°	11.312 to 146.44	8.98 to 147.562
Reflections collected	1961	4761
Independent reflections	963 [R_{int} = 0.0284]	2227 [$R_{int} = 0.0252$]
Data/restraints/parameters	963/0/65	2227/0/126
Goodness-of-fit on F^2	1.029	1.100
Final <i>R</i> indexes [I>= 2σ (I)]	$R_1 = 0.0375, wR_2 = 0.1024$	$R_1 = 0.0376$, wR ₂ = 0.0973
Final R indexes [all data]	$R_1 = 0.0384, wR_2 = 0.1031$	$R_1 = 0.0398$, wR ₂ = 0.0981
Largest diff. peak/hole / e Å ⁻³	0.45/-0.53	0.33/-0.68

Table S2 Crystallographic parameters of $[H_2TAP]_2MnCl_6$ (3) and $[H_2MXD]_2MnCl_6$ (4)

 $R_1 = \sum ||F_0| - |F_c|| / \sum |F_0|. \ wR_2 = \left[\sum w(F_0^2 - F_c^2)^2 / \sum w(F_0^2)^2\right]^{1/2}$

Table S3 The main bond lengths of ${[H_2DAP]MnCl_4}_n$ (1) (Å)

Bond	Length/Å	Bond	Length/Å
Mn1-Cl1	2.5819(3)	Mn1- Cl1 ³	2.5819(3)
Mn1- Cl1 ¹	2.5819(3)	Mn1- Cl2	2.4880(15)
Mn1- Cl1 ²	2.5819(3)	Mn1- Cl2 ¹	2.4880(15)

Table S4 The main bond angles of $\{[H_2DAP]MnCl_4\}_n$ (1) (°)

Bonds	Angle /°	Bonds	Angle /°
Cl1-Mn-Cl1 ¹	180.0	Cl11-Mn-Cl21	90.31(4)
Cl1-Mn-Cl1 ²	87.937(12)	Cl1 ² -Mn-Cl1 ³	180.00(7)
Cl1-Mn-Cl1 ³	92.063(12)	Cl1 ² -Mn-Cl2	90.31(4)
Cl1-Mn-Cl2	90.31(4)	Cl1 ² -Mn-Cl2 ¹	89.69(4)
Cl1-Mn-Cl2 ¹	89.69(4)	Cl1 ³ -Mn-Cl2	89.69(4)
Cl11-Mn-Cl12	92.062(12)	Cl13-Mn-Cl21	90.31(4)
Cl1 ¹ -Mn-Cl1 ³	87.938(12)	Cl2-Mn-Cl2 ¹	180.0
Cl1 ¹ -Mn-Cl2	90.31(4)		

Table S5 The list of hydrogen bonds in ${[H_2DAP]MnCl_4}_n$ (1)

	d(D-H)	d(H_A)	<dha< th=""><th>$d(\mathbf{D} \ \mathbf{A})$</th><th>Δ</th></dha<>	$d(\mathbf{D} \ \mathbf{A})$	Δ
<i>D</i> -11	u(D=II)	u(111)	-DIII	u(D1)	1
N1-H1A	0.890	2.456	173.42	3.342	Cl1 ¹
N1-H1B	0.890	2.913	127.99	3.531	Cl1
N1-H1B	0.890	2.872	114.57	3.342	Cl1 ²
N1-H1B	0.890	2.790	151.25	3.596	Cl2 ³
N1-H1C	0.890	2.418	144.90	3.188	Cl2

Symmetry codes: ¹ [-*x*, -*y*+1, -*z*+1]; ² [-*x*+1/2, -*y*+1, *z*+1/2]; ³ [*x*+1/2, *y*, -*z*+1/2].

Table S6 The main bond lengths of ${[(H_2MELA)_2MnCl_5]Cl}_n$ (2) (Å)

Bond	Length/Å	Bond	Length/Å
Mn1-Cl1	2.5015(9)	Mn1- Cl3	2.5797(16)
Mn1- Cl1 ¹	2.5015(9)	Mn1- Cl4	2.6226(16)
Mn1-Cl2	2.4467(16)	Mn1- Cl4 ²	2.7939(16)

Table S7 The main bond angles of $\{[(H_2MELA)_2MnCl_5]Cl\}_n$ (2) (°)

Bonds	Angle /°	Bonds	Angle /°
Cl1-Mn-Cl1 ¹	174.25(6)	Cl1 ¹ -Mn-Cl4 ²	87.82(3)
Cl1-Mn-Cl2	91.83(3)	Cl2-Mn-Cl3	173.68(6)
Cl1-Mn-Cl3	87.94(3)	Cl2-Mn-Cl4	98.81(6)
Cl1-Mn-Cl4	91.91(3)	Cl2-Mn-Cl4 ²	88.77(5)
Cl1-Mn-Cl4 ²	87.82(3)	Cl3-Mn-Cl4	87.51(5)
Cl1 ¹ -Mn-Cl2	91.83(3)	Cl3-Mn-Cl4 ²	84.90(5)
Cl1 ¹ -Mn-Cl3	87.94(3)	Cl4-Mn-Cl4 ²	172.42(7)
Cl1 ¹ -Mn-Cl4	91.91(3)		

Table S8 The list of hydrogen bonds in $\{[(H_2MELA)_2MnCl_5]Cl\}_n$ (2)

D-H	d(D-H)	d(HA)	<dha< th=""><th>d(DA)</th><th>Α</th></dha<>	d(DA)	Α
N1-H1A	0.860	2.506	154.38	3.303	Cl4 ¹
N1-H1B	0.860	2.744	141.16	3.456	Cl1 ²
N1-H1B	0.860	2.568	136.68	3.248	Cl11
N2-H2	0.860	2.221	163.67	3.055	Cl1 ²
N3-H3	0.860	2.194	173.57	3.050	C13 ¹
N4-H4A	0.860	2.398	161.32	3.225	C15 ³
N4-H4B	0.860	2.362	157.83	3.175	C12 ²
N5-H5A	0.860	2.178	175.56	3.036	N6 ¹
N5-H5B	0.860	2.527	137.04	3.211	C15 ⁴

Symmetry codes: ¹ [-*x*+1, *y*, -*z*+1]; ² [*x*-1, *y*, *z*]; ³ [-*x*, -*y*+1, -*z*]; ⁴ [*x*+1, *y*, *z*];

Table S9 The main bond lengths of $[H_2TAP]_2MnCl_6$ (3) (Å)

Bond	Length/Å	Bond	Length/Å
Mn1-Cl1	2.5611(8)	Mn1- Cl2 ¹	2.5686(6)
Mn1- Cl1 ¹	2.5611(8)	Mn1- Cl2 ²	2.5686(6)
Mn1- Cl2	2.5686(6)	Mn1- Cl2 ³	2.5686(6)

Table S10 The main bond angles of $[H_2TAP]_2MnCl_6$ (3) (°)

Bonds	Angle /°	Bonds	Angle /°
Cl1-Mn-Cl1 ¹	180.0	Cl11-Mn-Cl23	93.481(18)
Cl1-Mn-Cl2	93.482(18)	Cl2-Mn-Cl2 ¹	180.0
Cl1-Mn-Cl2 ¹	86.518(18)	Cl2-Mn-Cl2 ²	91.12(3)
Cl1-Mn-Cl2 ²	93.482(18)	Cl2-Mn-Cl2 ³	88.88(3)
Cl1-Mn-Cl2 ³	86.518(18)	Cl2 ¹ -Mn-Cl2 ²	88.88(3)
Cl11-Mn-Cl2	86.518(18)	Cl2 ¹ -Mn-Cl2 ³	91.12(3)
Cl1 ¹ -Mn-Cl2 ¹	93.481(18)	Cl2 ² -Mn-Cl2 ³	180.0
Cl1 ¹ -Mn-Cl2 ²	86.519(17)		

Table S11 The list of hydrogen bonds in $[H_2TAP]_2MnCl_6$ (3)

D-H	d(D-H)	d(HA)	<dha< th=""><th>d(DA)</th><th>Α</th></dha<>	d(DA)	Α
N1-H1	0.860	2.984	140.96	3.692	Cl1
N1-H1	0.860	2.707	141.42	3.422	Cl2 ¹
N2-H2A	0.860	2.320	172.44	3.174	Cl1
N2-H2B	0.860	2.449	161.30	3.276	Cl2 ²
N3-H3A	0.860	2.391	153.69	3.185	Cl21
N3-H3B	0.860	2.394	153.07	3.185	Cl2 ¹
С3-Н3	0.930	2.880	138.11	3.626	Cl2 ₃
С3-Н3	0.930	2.880	138.11	3.626	Cl2 ₄

Symmetry codes: ¹ [-*x*+1, *y*, -*z*+1]; ² [-*x*+3/2, -*y*+1/2, -*z*+1/2]; ³ [-*x*+3/2, -*y*+1/2, -*z*+1/2]; ⁴ [- *x*+3/2, *y*-1/2, -*z*+1/2];

Table S12 The main bond lengths of $[H_2MXD]_2MnCl_6$ (4) (Å)

Bond	Length/Å	Bond	Length/Å
Mn1-Cl1	2.5787(4)	Mn1- Cl2 ¹	2.5138(5)
Mn1- Cl1 ¹	2.5786(4)	Mn1- Cl3	2.6628(5)
Mn1- Cl2	2.5138(5)	Mn1- Cl31	2.6627(5)

Table S13 The main bond angles of $[H_2MXD]_2MnCl_6$ (4) (°)

Bonds	Angle /°	Bonds	Angle /°
Cl1-Mn-Cl1 ¹	180.0	Cl11-Mn-Cl31	90.149(15)
Cl1-Mn-Cl2	88.831(16)	Cl2-Mn-Cl2 ¹	180.0
Cl1-Mn-Cl2 ¹	91.169(16)	Cl2-Mn-Cl3	88.414(17)
Cl1-Mn-Cl3	90.149(15)	Cl2-Mn-Cl3 ¹	91.587(17)
Cl1-Mn-Cl3 ¹	89.852(15)	Cl2 ¹ -Mn-Cl3	91.586(17)
Cl11-Mn-Cl2	91.168(16)	Cl21-Mn-Cl31	88.413(17)
Cl1 ¹ -Mn-Cl2 ¹	88.832(16)	Cl3-Mn-Cl3 ¹	180.0
Cl11-Mn-Cl3	89.851(15)		

Table S14 The list of hydrogen bonds in [H₂MXD]₂MnCl₆ (4)

D-H	d(D-H)	d(HA)	<dha< th=""><th>d(DA)</th><th>Α</th></dha<>	d(DA)	Α
N1-H1A	0.890	2.557	126.78	3.171	Cl1
N1-H1A	0.890	2.728	136.04	3.425	Cl3 ¹
N1-H1B	0.890	2.835	113.86	3.297	Cl1 ²
N1-H1B	0.890	2.418	149.6	3.218	Cl2 ¹
N1-H1C	0.890	2.391	164.41	3.257	C13 ³
N2-H2A	0.890	2.72	122.01	3.28	Cl1 ⁴
N2-H2A	0.890	2.439	150.73	3.245	C12 ⁴
N2-H2B	0.890	2.413	155.96	3.246	Cl1 ⁵
N2-H2C	0.890	2.585	136	3.284	C13 ⁶
N2-H2C	0.890	2.917	114.56	3.385	C13 ⁴

Symmetry codes: ¹ [*x*+1, *y*, *z*]; ² [-*x*+1, -*y*+1, -*z*]; ³ [-*x*, -*y*+1, -*z*]; ⁴ [-*x*+1, -*y*+1, -*z*+1]; ⁵ [*x*+1, *y*+1, *z*+1]; ⁶ [*x*+2, *y*+1, *z*+1]