Supporting Information

Solution-phase decomposition of ferrocene into wüstite-iron oxide

core-shell nanoparticles

M. J. Loedolff, R. O. Fuller, G. Nealon, M. Saunders, M. A. Spackman, G. A. Koutsantonis

Additional Experimental

Nuclear Magnetic Resonance

NMR Spectra were recorded on a Varian 400 MHz spectrometer (399.9 MHz for ¹H, 100.6 MHz for ¹³C). Spectra were calibrated against the residual solvent signal of d6-benzene (δ 7.16 ppm for ¹H, 128.06 ppm for ¹³C) and all chemical shifts are reported in ppm.

EDS Software information

Bruker Esprit V1.9 software was used for EDS quantification.

Nanoparticle Characterisation

SAED of spherical nanoparticles

SAED	SAED	SAED	SAED	Planar	Planar	Planar
Figure	planar	Figure	planar	spacings	spacings for	spacings for
2(b) label	spacings	2(d)	spacings	for	Magnetite ²	Maghemite ³
	from	label	from	Wüstite ¹	(Fe ₃ O ₄)	(γ-Fe ₂ O ₃)
	Figure 2(b)		Figure	(FeO)	JCPDS No.	JCPDS No.
	(nm)		2(d)	JCPDS	19-629	24-81
			(nm)	No. 46-		
				1412		
	-	i	0.295	-	2.9684	2.9513
i	0.249	ii	0.248	2.4863	2.5314	2.5168
ii	0.215	iii	0.214	2.1532	2.0989	2.0868
	-	iv	0.161	-	1.6158	1.6065
iii	0.151	v	0.151	1.5225	1.4842	1.4756
iv	0.130	vi	0.129	1.2984	1.2803	1.273
v	0.124	vii	0.124	1.2432	1.2118	1.2048

Table S1 Dianar spacings measured from SAED	nattorne in Figures 2	(h) and $2(d$	١
Table SI – Planar spacings measured from SAED	patterns in Figures Z	(D) anu Z(U).

XRD of spherical nanoparticles

Position	Planar spacing	Relative Intensity	Compound	Miller Indices
(°2θ)	(Å)	(%)	match	(hkl)
18.17	4.878	7.90	Fe ₃ O ₄ /γ-Fe ₂ O ₃	111
29.99	2.977	27.24	Fe ₃ O ₄ /γ-Fe ₂ O ₃	220
35.35	2.537	100.00	Fe ₃ O ₄ /γ-Fe ₂ O ₃	311
36.00	2.493	52.00	FeO	111
36.99	2.428	5.18	Fe ₃ O ₄ /γ-Fe ₂ O ₃	222
41.84	2.157	82.82	FeO	200
42.96	2.104	21.50	Fe ₃ O ₄ /γ-Fe ₂ O ₃	400
44.58	2.031	37.98	Fe	110
53.32	1.717	9.19	Fe ₃ O ₄ /γ-Fe ₂ O ₃	422
56.87	1.618	32.52	Fe ₃ O ₄ /γ-Fe ₂ O ₃	511
60.67	1.525	35.62	FeO	220
62.47	1.486	43.75	Fe ₃ O ₄ /γ-Fe ₂ O ₃	440
64.99	1.434	4.19	Fe	220
70.86	1.329	4.32	Fe ₃ O ₄ /γ-Fe ₂ O ₃	620
72.55	1.302	12.19	FeO	311
72.79	1.298	12.44	Fe ₃ O ₄ /γ-Fe ₂ O ₃	533
73.90	1.281	7.21	Fe ₃ O ₄ /γ-Fe ₂ O ₃	622
76.42	1.245	8.83	FeO	222
82.22	1.172	6.61	Fe	211
89.56	1.094	10.54	Fe_3O_4/γ - Fe_2O_3	731

Table S2 – XRD data summarised for the spherical nanoparticles. Reflections correspond to wüstite¹ (FeO), magnetite² (Fe₃O₄) and/or maghemite³ (γ -Fe₂O₃)), and iron⁴ (α -Fe).

PDF card numbers for the phases presented in Table S2:

Fe₃O₄: JCPDS No. 19-629

γ-Fe₂O₃: JCPDS No. 24-81

FeO: JCPDS No. 46-1312

α-Fe: JCPDS No. 6-696

Exclusion of oleylamine from reaction solution

Figure S1 – TEM images of nanoparticles formed when oleylamine was excluded from the reaction mixture; (a) HRTEM image marked with a "selected area" with corresponding FFT inset corresponding to the (111) wüstite¹ (FeO) plane, (b) SAED pattern similar to that obtained from spherical NPs containing planar spacings consistent with wüstite¹ (FeO) and additional weak rings from magnetite² (Fe₃O₄) and/or maghemite³ (γ -Fe₂O₃), (c) region with core-shell distorted cubic nanoparticles present in the sample and (d) region with core-shell spherical nanoparticles present.

Table S3 – Planar spacings measured from SAED pattern in Figure S1.

SAED Figure S1 label	SAED planar spacings (Å)	Planar spacings for Wüstite ¹ (FeO) JCPDS No. 46-1412	Planar spacings for Magnetite ² (Fe ₃ O ₄) JCPDS No. 19-629	Planar spacings for Maghemite ³ (γ-Fe ₂ O ₃) JCPDS No. 24-81
i	2.92	-	2.9684	2.9513
ii	2.49	2.4863	2.5314	2.5168
iii	2.14	2.1532	2.0989	2.0868
iv	1.59	-	1.6158	1.6065
v	1.52	1.5225	1.4842	1.4756
vi	1.30	1.2984	1.2803	1.273
vii	1.24	1.2432	1.2118	1.2048

Figure S2 – (a) TEM micrograph of nanoparticles produced when no oleylamine is present in the reaction solution and oleic acid concentration is decreased with (b) the corresponding SAED pattern. The measured planar spacings correspond to wüstite¹ (FeO), magnetite² (Fe₃O₄) and/or maghemite³ (γ -Fe₂O₃) as summarised in Table S4.

SAED Figure S2(b) label	SAED planar spacings (Å)	Planar spacings for Wüstite ¹ (FeO) JCPDS No. 46- 1412	Planar spacings for Magnetite ² (Fe ₃ O ₄) JCPDS No. 19-629	Planar spacings for Maghemite ³ (γ-Fe ₂ O ₃) JCPDS No. 24-81
i	2.92	-	2.9684	2.9513
ii	2.49	2.4863	2.5314	2.5168
iii	2.14	2.1532	2.0989	2.0868
iv	1.59	-	1.6158	1.6065
v	1.52	1.5225	1.4842	1.4756
vi	1.30	1.2984	1.2803	1.273
vii	1.24	1.2432	1.2118	1.2048

Table S4 – Planar	spacings r	measured	from SAFE) pattern in	Figure S2
	opaonigo i	incasar ca		paccernin	

Detailed characterisation of distorted cubic nanoparticles

Figure S3 – Distorted cubic nanoparticles size distribution from bright field TEM imaging. 500 nanoparticles were used to determine the size ($38.6 \pm 6.9 \text{ nm}$).

Figure S4 – Distorted cubic nanoparticles; (a) Nanoparticles with a selected area corresponding to (b) HRTEM lattice measurements are in agreement with the core consisting of wüstite (2.48 \pm 0.03 Å) and the shell consist of magnetite/maghemite (2.51 \pm 0.03 Å). (c) Freshly synthesised distorted cubic core-shell nanoparticle with a measured shell thickness of 2.92 nm and (d) cubic core-shell nanoparticle that has been aged for three months, with a shell thickness of 3.76 nm.

SAED Figure S5(b) label	SAED planar spacings (Å)	Planar spacings for Wüstite ¹ (FeO) JCPDS No. 46-1412	Planar spacings for Magnetite ² (Fe ₃ O ₄) JCPDS No. 19- 629	Planar spacings for Maghemite ³ (γ-Fe ₂ O ₃) JCPDS No. 24-81
i	2.949	-	2.9684	2.9513
ii	2.498	2.4863	2.5314	2.5168
iii	2.143	2.1532	2.0989	2.0868
iv	1.601	-	1.6158	1.6065
v	1.520	1.5225	1.4842	1.4756
vi	1.299	1.2984	1.2803	1.273
vii	1.249	1.2432	1.2118	1.2048

Table S5 – Planar spacings measured from SAED pattern in Figure 5.

XRD of distorted cubic nanoparticles

Table S6 – XRD data summarised for the distorted cubic nanoparticles. Reflections correspond to magnetite² (Fe₃O₄) and/or maghemite³ (γ -Fe₂O₃)), wüstite¹ (FeO), and iron⁴ (α -Fe).

Position	Planar spacing	Relative Intensity	Compound	Miller Indices
(°2θ)	(Å)	(%)	match	(hkl)
30.04	2.972	11.47	Fe ₃ O ₄ /γ-Fe ₂ O ₃	220
35.42	2.532	39.35	Fe ₃ O ₄ /γ-Fe ₂ O ₃	311
36.07	2.488	81.17	FeO	111
41.84	2.157	100.00	FeO	200
43.01	2.101	9.27	Fe ₃ O ₄ /γ-Fe ₂ O ₃	400
44.62	2.029	9.02	Fe	110
53.43	1.713	3.86	Fe ₃ O ₄ /γ-Fe ₂ O ₃	422
56.92	1.616	10.07	Fe ₃ O ₄ /γ-Fe ₂ O ₃	511
60.74	1.524	47.59	FeO	220
62.48	1.485	15.29	Fe ₃ O ₄ /γ-Fe ₂ O ₃	440
72.59	1.301	16.90	FeO	311
76.53	1.244	14.27	FeO	222

PDF card numbers for the phases presented in Table S6:

Fe ₃ O ₄ :	JCPDS No. 19-629
. 0,04.	501 00 1101 15 015

FeO: JCPDS No. 46-1312

α-Fe: JCPDS No. 6-696

EDX Quantification

Figure S5 – EDX spectrum from centre of the distorted cubic particle in Figure 7.

Quantification of the EDX spectrum was carried out with Bruker's Esprit software using the Cliff-Lorimer model, confirming that the core of the particle has a Fe:O ratio close to 1:1, which further supports the conclusion that the NP core is wüstite, FeO (see Table S7, below).

	Atomic	Series	Concentration	Concentration	Error (3 sigma)
	Number		[wt. %]	[at. %]	[wt. %]
Iron	26	K-series	78.37	50.94	7.14
Oxygen	8	K-series	21.63	49.06	2.03
		Total:	100	100	

Table S7 - 1	Tabla with		uantificatio	a roculto
Table 57 –	able with	EDSQ	uantincatioi	results

Extended reaction times

SAED Figure 9(b) label	SAED planar spacings (Å)	Planar spacings for Wüstite ¹ (FeO) JCPDS No. 46-1412	Planar spacings for Magnetite ² (Fe ₃ O ₄) JCPDS No. 19-629	Planar spacings for Maghemite ³ (γ-Fe ₂ O ₃) JCPDS No. 24- 81
i	2.88	-	2.9684	2.9513
ii	2.51	2.4863	2.5314	2.5168
iii	2.14	2.1532	2.0989	2.0868
iv	1.59	-	1.6158	1.6065
v	1.52	1.5225	1.4842	1.4756
vi	1.32	1.2984	1.2803	1.273
vii	1.27	1.2432	1.2118	1.2048

Table S8 – Planar spacings measured from SAED pattern in Figure 9(b).

Exclusion of oleic acid from the reaction mixture

Ferrocene (0.26 M) was thermally decomposed in the presence of oleylamine (46 mM) as surfactant and 1-octadecene (20 mL) as solvent. Oleic acid was absent from the reaction mixture, similarly to previously reported literature.⁵ The mixture was allowed to reflux under argon for an hour before being cooled to room temperature. The separation of nanoparticles from solution was challenging, as few nanoparticles appeared to form during this reaction. Unsurprisingly, the nanoparticles that did form (Figure S6) were smaller than the nanoparticles that formed when oleic acid was present in solution. These small nanoparticles also had some irregularity in regards to their shape. The average size of these nanoparticles was 5.00 ± 0.85 nm in diameter.

Figure S6 – Nanoparticles that formed (a) during the decomposition of ferrocene in the absence of oleic acid, with (b) accompanied size distribution from bright field TEM imaging. 250 nanoparticles were used to determine the size (5.00 ± 0.85 nm).

Distorted cubic nanoparticles with concave faces

Figure S7 – Cubic nanoparticles with concave faces size distribution from bright field TEM imaging. 1000 nanoparticles were used to determine the size $(23.5 \pm 2.6 \text{ nm})$.

Table S9 -	- Planar	spacings	measured	from SAFD	nattern in	Figure 10(h)
Table 35	i ianai	spacings	measureu	HOIH SALD	patternin	

SAED Figure 10(b) label	SAED planar spacings (Å)	Planar spacings for Wüstite ¹ (FeO) JCPDS No. 46-1412	Planar spacings for Magnetite ² (Fe ₃ O ₄) JCPDS No. 19- 629	Planar spacings for Maghemite ³ (γ-Fe ₂ O ₃) JCPDS No. 24-81
i	2.98	-	2.9684	2.9513
ii	2.49	2.4863	2.5314	2.5168
iii	2.14	2.1532	2.0989	2.0868
iv	1.63	-	1.6158	1.6065
v	1.51	1.5225	1.4842	1.4756
vi	1.30	1.2984	1.2803	1.273
vii	1.24	1.2432	1.2118	1.2048

Figure S8 – STEM imaging of the cubic nanoparticles with concave faces. (a) BF STEM, (b) ADF STEM, and (c) HAADF STEM images suggest particles have a core-shell morphology. The EDX spectrum (d) showed the particles consisted of Fe and O, with Cu and C signals also observed due to the TEM grid. Elemental mapping shows the particles consisted entirely of (e) Fe and (f) O.

Extended reaction resulting in larger cubic nanoparticles with concave faces

Figure S9 – TEM images of (a) larger distorted cubic nanoparticles with concave faces with corresponding (b) SAED. The measured planar spacings correspond to wüstite¹ (FeO), magnetite² (Fe₃O₄) and/or maghemite³ (γ -Fe₂O₃) as summarised in Table S10.

SAED Figure	SAED planar	Planar spacings for	Planar spacings	Planar spacings
	spacings (A)	JCPDS No. 46-1412	(Fe ₃ O ₄)	(γ-Fe ₂ O ₃)
			JCPDS No. 19-629	JCPDS No. 24-81
i	2.943	-	2.9684	2.9513
ii	2.489	2.4863	2.5314	2.5168
iii	2.141	2.1532	2.0989	2.0868
iv	1.611	-	1.6158	1.6065
v	1.515	1.5225	1.4842	1.4756
vi	1.303	1.2984	1.2803	1.273
vii	1.244	1.2432	1.2118	1.2048

Table S10 – Planar spacings measured from SAED pattern in Figure S9(b).

Figure S10 – Nanoparticle size distribution, from bright field TEM imaging, of the larger distorted cubic nanoparticles with concave faces. 400 nanoparticles were used to determine the size (54 ± 13.5 nm).

NMR experiments

¹H NMR experiment

Figure S11 – ¹H NMR spectra of oleic acid, oleylamine and the surfactant mix after heating for 1 h. The most noteworthy feature of the NMR spectrum of the mixture is the appearance of a singlet peak at 8.63 ppm in the surfactant mix. This is indicative of a deprotonation of oleic acid and protonation of oleylamine. When integrating the peaks in the mixture spectrum the relative integrals of the peaks at 1.10 ppm, 5.55 ppm and 8.63 ppm were 6:4:3, which is consistent with a total of six protons on the two -CH₃ groups, four protons across the two double bonds and three protons on the –NH₃⁺ functional group.

¹³C NMR experiment

Figure S12 – ¹³C NMR spectra of oleic acid, oleylamine and the surfactant mix after heating for 1 h. The most noteworthy features in the NMR spectra are the carbon peak at 180.99 ppm in the oleic acid spectrum is also apparent in the surfactant mix at 180.50 ppm. The peak at 42.75 ppm of the oleylamine spectrum appears to shift upfield to 39.85 ppm in the mixture spectrum, as oleylamine is protonated. The peak at 34.65 ppm in the oleic acid spectrum appears to shift downfield to 38.80 ppm in the mixture spectrum, as oleic acid is deprotonated. No new peaks consistent with an amide are present in the mixture spectrum.

References

- 1. H. Fjellvåg, F. Grønvold, S. Stølen and B. Hauback, *J. Solid State Chem.*, 1996, **124**, 52-57.
- 2. B. A. Welchsler, D. H. Lindsley and C. T. Prewitt, *Am. Mineral.*, 1984, **69**, 754-770.
- 3. A. N. Shmakov, G. N. Kryukova, S. V. Tsybulya, A. L. Chuvilin and L. P. Solovyeva, *J. Appl. Crystallogr.*, 1995, **28**, 141-145.
- 4. R. W. G. Wyckoff, *Crystal Structures Volume 1*, Interscience Publishers, New York, 1963.
- 5. D. A. J. Herman, S. Cheong-Tilley, A. J. McGrath, B. F. P. McVey, M. Lein and R. D. Tilley, *Nanoscale*, 2015, 7, 5951-5954.